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1. Introduction to the research topic

Our research topic is positioned within the area of Algorithmic Game Theory, which lies on the
boundary between Mathematics and Computer Science: the former provides the mathematical
models to describe the problems and their solutions, in the form of game representations and
equilibria concepts; the latter provides the computational and algorithmic tools to either solve
those problems in an efficient way or to prove their difficulty1 to be solved.

More specifically, for Computer Science — the main field of the author — the main research
areas involved are: Online Convex Optimization, as most of Game Theoretic problems can be
expressed as minimizing convex functions over convex sets; Machine Learning, the area where
the concept of regret minimization have originated; Theoretical Computer Science, which is
involved each time the complexity or the difficulty 1 of a problem has to be demonstrated.

Being the research topic at the intersection between different disciplines, the most relevant
venues for publishing scientific papers are also spread between different research areas, with a
particular enphasis on Artificial Intelligence — which also comprises Machine Learning — as
the work of the author is more pertaining to it. They have been selected on the basis of these
factors: measured quality of the venue, represented by the GGS Ranking2 for conference and
by the impact factor for journals, acceptance rate, publication of the most influential articles
and authors in their respective areas and opinion of the scholars working in these areas, in
particular the ones the author is collaborating with.

The most prestigious conferences related to Regret Minimization for Non-Cooperative
Games, with the research area they belong to, are:

• Association for the Advancement of Artificial Intelligence (AAAI) - Artificial Intelligence;

• International Conference on Machine Learning (ICML) - Artificial Intelligence;

• International Joint Conference on Artificial Intelligence (IJCAI) - Artificial Intelligence;

• Neural Information Processing Systems (NIPS) - Artificial Intelligence;

1In terms of computational complexity, e.g., NP-hardness.
2See the Website: http://gii-grin-scie-rating.scie.es/conferenceRating.jsf.
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• ACM Symposium on Theory of Computing (STOC) - Theoretical Computer Science;

• Autonomous Agents and Multi Agent Systems (AAMAS) - Artificial Intelligence;

• ACM Conference on Economics and Computation (EC) - Game Theory, Microeconomics,
Artificial Intelligence, Theoretical Computer Science;

• Association for Uncertainty in Artificial Intelligence (UAI) - Artificial Intelligence;

• ACM-SIAM Symposium on Discrete Algorithms (SODA) - Theoretical Computer Science.

The most prestigious journals related to Regret Minimization for Non-Cooperative Games,
with the research area they belong to, are:

• Artificial Intelligence Journal - Artificial Intelligence;

• Journal of Artificial Intelligence Research - Artificial Intelligence;

• Machine Learning - Artificial Intelligence;

• Journal of Machine Learning Research - Artificial Intelligence;

• Algorithmica - Theoretical Computer Science;

• Games and Economic Behavior - Game Theory, Economics.

1.1. Preliminaries

We briefly introduce several of the basic concepts needed to understand what Game Theory is
about and then to be able to frame and classify the main works that have been done in this
field. Further details can be found in [29].

1.1.1 Game Representations

Definition 1. A normal-form (or strategic-form) game is a tuple (N, A, U), where:

• N is the set of players;
• A = ×i∈N Ai is the set of action profiles (i.e., tuples containing an action for each player), where

Ai is the set of actions of player i;
• U = (U1, . . . , Un) is the set of the utility functions Ui : A→ R, each mapping an action profile

into its respective payoff for player i.

Definition 2. An imperfect-information extensive-form game Γ is a tuple (N, V, H, A, L, χ, U)
where:
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Figure 1: A two-player normal-form game and its equivalent extensive-form game.

• N is the set of n players;
• V is the set of nonterminal decision nodes, and Vi ⊆ V is the set of decision nodes belonging to

player i ∈ N;
• H = (H1, . . . , Hn) is the collection of information sets; for each i ∈ N, Hi is an information parti-

tion of Vi such that decision nodes within the same information set h ∈ Hi are not distinguishable
by player i;
• A = ×h∈HCh is the set of actions, where Ch is the set of actions available at information set h

(w.l.g. we assume each Ch disjoint);
• L is the set of terminal nodes (leaves);
• χ : V × A→ V ∪ L is the successor function;
• U = (U1, . . . , Un) is the set of utility functions Ui : L→ R, ∀i ∈ N.

Moreover, an extensive-form game where, at each stage, the players recall the whole infor-
mation they acquired in earlier stages is said to have perfect recall, while if it lacks this property
it is said to have imperfect recall. More formally, if for all h ∈ Hi and n ∈ h we call ρ(n) ⊂ Hi the
set of information sets of player i that are on the path from the root of the tree to n, then player
i has perfect recall if and only if ρ(n1) = ρ(n2) for all h ∈ Hi and n1, n2 ∈ h.

An extensive-form game Γ can be equivalently represented in normal-form. Let Pi =
×h∈Hi ρ(h) be the set of pure normal-form plans of player i ∈ N. A normal-form plan p ∈ Pi
specifies an action per information set of player i. The normal-form game equivalent to
Γ = (N, A, V, L, ι, ρ, χ, U, H) is then the game (N, P = ×i∈NPi, U′), where U′ = (U′1, . . . , U′n) is
the set of the U′i : P→ R s.t. U′i (p1, . . . , pn) = Ui(`), where ` ∈ L is the terminal node reached
when playing plan profile (p1, . . . , pn). The size of this the normal-form game is, in general,
exponential in the size of Γ.

A game, either in normal-form or in extensive-form, is said to be a zero-sum game if
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∑i∈N Ui(x) = 0 ∀x ∈ Dom(U); otherwise, the game is said to be a general-sum game.

1.1.2 Strategy Representations

A normal-form strategy si for i ∈ N is defined as a function si : Ai → ∆|Ai|. We denote by Si the
normal-form strategy space of player i, and by S = ×i∈NSi the space of normal-form strategy
profiles.

For extensive-form games, as normal-form strategies are exponentially many in the size of
the game, a concept often used is the one of behavioural strategies [21]. A behavioural strategy
σi for i ∈ N is defined (with a slight abuse of notation) as a function σi : Hi → ∆|CHi |, that
assigns to each information set h ∈ Hi of player i a distribution over its actions Ch. We denote
by Σi the behavioural strategy space of player i, and by Σ = ×i∈NΣi the space of behavioural
strategy profiles.

1.1.3 Equilibria

There are three classical notions of equilibria for normal-form games: Nash Equilibrium [27],
Correlated Equilibrium [3] and Coarse Correlated Equilibrium [26].

For convenience of notation, let s−i = (s1, . . . , si−1, si+i, . . . , sn) ∈ ×j∈N\{i}Sj be the strategy
profile s without the strategy for player i, and let Ui(s) = ∑a∈A(∏sp∈s sp(a))Ui(a) be the
expected utility for player i under strategy profile s.

Definition 3. Given a normal form game (N, P, U), a strategy profile ŝ ∈ S is a Nash Equilibrium
(NE) if and only if, for every i ∈ N, the following holds:

Ui(ŝ) ≥ max
si∈Si

Ui(si, ŝ−i).

A correlated (joint) normal-form strategy x ∈ X is defined as x : A→ ∆|A|. It is worth noting
that, in general, a joint strategy cannot be marginalized into a strategy profile s such that
∏sp∈s sp(a) = x(a) for each action a ∈ A.

Definition 4. Given a normal form game (N, P, U), a joint strategy x ∈ X is a Correlated Equilibrium
(CE) if and only if, for every i ∈ N and ai, a′i ∈ Ai, the following holds:

∑
a−i∈A−i

x(ai, a−i)(U(ai, a−i)−U(a′i, a−i)) ≥ 0.

A CE can be interpreted in terms of a mediator (a.k.a. correlation device) who, ex ante the
play, draws (a1, . . . , an) according to the publicly known x and privately communicates each
recommendation ai to the corresponding player i.
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Definition 5. Given a normal form game (N, P, U), a joint strategy x ∈ X is a Coarse Correlated
Equilibrium (CCE) if and only if, for every i ∈ N and a′i ∈ Ai, the following holds:

∑
ai∈Ai

∑
a−i∈A−i

x(ai, a−i)(U(ai, a−i)−U(a′i, a−i)) ≥ 0.

CCE differs from CE in that a CCE only requires that following the suggested action is a
best response in expectation, before the recommended action is actually revealed Moreover, we
recall the inclusion relation between all these equilibria, which is, in general, strict: every NE is
also a CE, but a CE may be not a NE, and every CE is also a CCE, but a CCE may be not a CE.

All of these equilibrium concepts can be extended to extensive-form games as well, by
leveraging the equivalent normal-form representation; in general, this leads to exponentially
complex problems due to the rise in dimensionality required by this equivalence, but in some
particular cases (e.g. two-player zero-sum) it can be shown that alternative techniques can
be employed to find extensive-form equilibria without the need of the exponentially-large
normal-form.

1.1.4 Regret and Hannan Consistency

The notion of regret refers to a very different setting with respect to the “static” equations for
equilibria that we have seen so far: the game is repeatedly played, with a potentially different
strategy profile st ∈ S at each timestep t, and players can at each timestep observe their own
payoff and the payoff the would have received for each action they could have played (in
Machine Learning such a setting is usually called expert). Regret is, in general, a measure of
how much a player would have preferred to play a different strategy with respect to st, the
strategy he actually used. As regret-based algorithms leverage past information (the so-called
history of play) to learn how to play a game — possibly reaching an equilibrium —, they are
called learning algorithms (or sometimes forecasters).

The classical concept of Hannan Consistency [15] (also known as Universal Consistency) is the
ability of a learning algorithm to achieve a sublinear regret with respect to the best possible
action in hindsight. More formally:

Definition 6. A learning algorithm Ł is said to be Hannan Consistent for player i ∈ N if and only if

lim
T→∞

sup
1
T

(
max
ai∈Ai

T

∑
t=1

Ui(ai, st
−i)−

T

∑
t=1

Ui(st)

)
= 0.

The regret minimized by Hannan Consistency, known as external regret, is only one of the
possible ways to define regret; others include internal regret, that is computed over pairs of
actions, and swap regret, where arbitrary substitutions of actions are taken into account.
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1.1.5 Approachability

The concept of approachability of a convex set, introduced by Blackwell in 1956 [5], is a
fundamental tool for the analisys of dynamic regret-based algorithms. In its more general
setting, it involves two players, called i and −i, repeatedly playing a vector-valued game (i.e.
a game where the utility function ~U goes from the action space to some vector space RL) in
which player i tries to keep the average payoff as close as possible to a given convex closed set
C , while player −i tries to deny that.

Theorem 1 (Blackwell’s Approachability Theorem). Let C ∈ RL be a convex and closed set, and
denote by wC its support function (i.e. wC (λ) = sup{λ · c : c ∈ C } for all λ ∈ RL). Then C is
approachable by player i if and only if for every λ ∈ RL there exists a mixed strategy sλ ∈ ∆(Ai) such
that, for all a−i ∈ A−i

λ · ~U(sλ, a−i) ≤ wC (λ).

In the context of regret minimization, this result is often used to show that a procedure is
able to minimize regret, by substituting the negative orthant RL

− = {x ∈ RL : x ≤ 0} as the set
C to approach and by setting the vector payoff of the game to the vector of regret observed by
player i at timestep t.

1.2. Research topic

The main objective of our research topic is to employ regret minimization techniques to
approach game theoretical equilibria in a computationally efficient way. While doing so, we
also aim at studying some important properties of both the game itself and its equilibria, such
as the possibility to compactly represent them (i.e. store games and their equilibria in an
efficient way). More specifically, our research will focus on Correlated and Coarse Correlated
Equilibria for games in extensive-form, as the available literature lacks strong results for this
very interesting setting.

We think that a regret-based approach for computing game theoretical equilibria is very
interesting first and foremost because it conveys the idea of decentralized rationality; this means
that there is no need of a central device that collects all the data about the game and the players
and then compute an equilibrium; instead, rational agents can play the game by themselves
correcting their strategy in a way as to minimize their own regret (of whatever kind), and then
naturally reach an equilibrium in the long run. Regret minimization is an interesting topic
also because it can easily outperform linear programming, the classical way of computing
game theoretical equilibria, in particular on extensive-form games, where often the problem
can be formulated as a set of local regret minimizers at each information set, thus fitting in
a more natural way the structure of the game tree. Another important advantage over linear
programming, in particular for practical large-scale applications (such as solving Heads-up
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Hold’em Poker [7]), is the fact that regret-based algorithms are almost always approximate
anytime algorithms, which means that their computation can be stopped at any moment and
still yield an appoximate solution (of course, the more time is given to an algorithm the better
the approximation).

As regards the choice of CE and CCE as solution concepts in general-sum games, it is
motivated by these facts: they are generalization of NEs, thus they are in a sense richer sets,
which include equilibria with better properties in terms of social welfare (i.e. the sum of the
utility for all the players) — a CE may lead to a social welfare arbitrarily larger than a NE and
a CCE may lead to a social welfare arbitrarily better than a CE; they are computationally more
tractable than NEs, which makes the problem more meaningful in an algorithmic perspective;
their formulation is mathematically more similar to some forms of regret, which makes more
natural to employ regret-based techniques in a very general way (while for NE it is possible to
adapt regret minimizers only for 2-player zero-sum games) — it is known that regret dynamics
may lead to CCEs that are close in terms of social welfare to the socially optimal CCE.

We are also focusing on games that admit a much more compact representations than their
equivalent normal-form ones, and in particular on extensive-form games — far more expressive
than normal-form games while still being much more general than most of the other, more
specialized, game representations — and on polymatrix games.

2. Main related works

2.1. Classification of the main related works

The most relevant dimensions alongh which we can classify the available literature about regret
minimization for non-cooperative game theory are the following.

• The kind of equilibrium concept is reached (more formally, approached) by a particular
regret-based algorithm, taking into consideration NEs, CEs, and CCEs.

• The number of players of the game (either two or a general number N).

• The type of game being played, in particular zero-sum or general-sum.

• The game representation, in particular normal-form or extensive-form.
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2 players zero-sum N players zero-sum N players
general-sum

NE normal-form [1], [2] [10], [11]
NE extensive-form [8], [9], [20], [22]3,

[23], [30], [31]
[13], [18], [28] [12]

CE normal-form [16]
CE extensive-form
CCE normal-form [17]

CCE bayesian [19]
CCE extensive-form

Other [4], [6], [14], [24], [25]

2.2. Brief description of the main related works

The state of the art regret-based algorithm for finding 2-player zero-sum NE in normal-form
games is the EXP3 algorithm [2], which can also be extended to compute CE and CCE:
unfortunately, in this case regret is no longer guaranteed to be minimized, and so this approach
become ineffective. In principle, this result could also be applied to computing NE in extensive-
form games, but in practice it would suffer from the exponentially increased dimensionality of
the equivalent normal-form game. For this reason, research has searched for more specialized
algorithms able to exploit the regularities in the structure of compactedly represented games
(like extensive-form games) and to thus be able to efficiently compute equilibria. Another
important family of algorithms employed to compute NE in 2-player zero-sum games efficiently
are the so-called Multiplicative Weights (or Polynomial Weights) algorithms [1], that can be
proved have optimal worst-case expected regret (i.e. it matches best achievable regret lower
bound 4 up to constant factors). There are also some works [10, 11] tackling the problem of NE
in normal-form general-sum games with an arbitrary number of player, although they are still
heavily theoretical in their nature and there has not been yet any algorithmic approach on this
research line.

As it is evident from the table, most of the research so far has been focused on finding
2-player zero-sum NE in extensive-form games (with perfect recall), and in particular has
been concentrated on the Counterfactual Regret Minimization (CFR) algorithm 5 [31] and its
many variants and adjustments, such as CFR+ [30] and Monte Carlo CFR [23, 20]; a CFR-like
algorithm has also been used to compute perfect equilibria [8], which are NE robust to players’
deviations from the equilibrium itself, and quantal response equilibria [9], where players are

3In this work, players may have a specific form of imperfect recallness.
4Any regret minimizing algorithm have a Ω(

√
Tln|A|) regret.

5In its first version, CFR had a regret upper bound for each player of O(∆u,i|Ii|
√

T|Ai|), where ∆u,i is the range
of the utility of player i.
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assumed to make errors in choosing which pure strategy to play. Some works also tried to
tackle the problem of extending the CFR algorithm to the N-player setting [28, 13] or to the
general-sum one [12], even though there is still no theoretical guarantee of convergence to a NE
for this cases. Another proposed extension, also without solid theoretical guarantess, is the one
by [18], focusing on the case of multiplayer collaborative games (2 teams of 2 players). There is
then only one work that tries to tackle imperfect-recall extensive-form games [22], achieving
some theoretical results only on a very restricted class of games (the so-called well-formed
imperfect-recall games). This wide interest is Counterfactual Regret Minimization as a mean
for reaching NE, particularly in large-scale extensive-form games, is justified by its incredibly
good scalability properties; as a lot of experimental work suggest, CFR is by far the fastest
algorithm to date for computing 2-player zero-sum NE.

For what regards CE and CCE, the main works are the one by Hart and Mas Colell [16, 17],
that ground the main equivalence between minimizing regret, respectively internal or external
regret, to approach them in normal-form general-sum games. To the best of our knowledge,
there has been no effort still to generalize those results to the extensive-form setting.

There is a duality in the form of regret that all of this papers focus on, which are sometimes
called action regret and distribution regret: the former is calculated with respect to the actions
that the agent actually plays, which is in general sampled from a distribution over the action
set (i.e. a strategy); in the latter case, instead, the regret at time t is directly calculated with
respect to the agent’s mixed strategy itself — essentially, it is an expectation at time t− 1 of the
action regret at time t. In particular, most of the works done on CFR employ distribution regret
(at least from the theoretical point of view), while the literature on CE and CCE tends more
towards employing action regret.

Among other works that do not precisely fit in the classification we have proposed, we
can find both very theoretical results indipendent of the specific equilibrium concept reached,
such as the Price of Total Anarchy [6, 25] — a concept related to the quality of the equilibirum
reached —, and more practical results that apply to specific class of games, such as Bayesian
Games [19, 4], security games [24] or Convex Games [14].

2.3. Discussion

To conclude our review of the available literature on Regret Minimization for Non-Cooperative
Games, we present a critical examination of what have been the focal points of the research in
the last years, underlining what problems and issues are still open and where are the areas in
which further work is needed.

The largest amount of contributions has certainly and clearly been the ones targeting 2-
player zero-sum Nash Equilibria computation, with a particular focus on alternative game
representations with respect to the normal-form (e.g. extensive-form games, bayesian games);

9



Politecnico di Milano • Honours Programme • November 2018 • CSE Track

some of the techniques developed in this area have proved to be very efficient and scalable,
enabling for the first time to solve some really big games, including complex ones competitively
played by humans (e.g. Heads-up Hold’em Poker [7]).

Although it has paved the way for such remarkable achievements, this strong committment
to a single branch of the research field has left a lot of other equally interesting ones without
adequate attention. For instance, not a lot is known about what kind of equilibria can be
efficiently reached in imperfect-recall games, nor any algorithm has been developed to do so.
The same holds for the computation of CE and CCE (and in general of communication-related
equilibria) for compactly represented games, whether they be extensive-form, polymatrix ones
or others. We believe that a lot more can be done in these areas, with the help of the powerful
tool of regret-based learning.
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