
Research Project Proposal:
Deep Learning AI for Racing Games

Emilio Capo
emilio.capo@mail.polimi.it

Computer Science and Engineering (CSE)



Outline
• Research Area

o Why Deep Learning for video games?

o Classification and open issues

• Research Topic

o Why Deep Learning for racing games?

o Classification and research opportunities

• Research Project Structure

o Content

o Tasks and tentative schedule



Research Area



Where are we?
Artificial Intelligence

Machine Learning

Deep Learning

Deep Learning applications in Video Games

Right here!



Why Video Games?
(Industry’s point of view)

• AI techniques currently used in 
video games are reaching their
limits.

o High dependence on hard-
coded behaviours (low 
generalization)

• Behaviour realism fails to keep the 
pace of graphics realism.

Example: Assassin’s Creed Odissey (2018)



Why Video Games?
(AI researchers’ point of view)

• Video games provide
richness and variety in 
learning environments.

• Some available game 
frameworks are used as
benchmarks.



What is Deep Learning?



Advantages of a Deep 
architecture



Why Deep Learning for Games?

• Novel machine learning technique.

o Able to solve complex task.

o Data recorded from games available in large datasets online.

• Promising generalization capabilities.

o More spontaneous and believable behaviours (Industry’s point of view).

o Potential applications in the field of General AI (AI researchers’ point of 
view).



DL Applications in Games (1)

• Deep Learning can used to support the 
game in its development stage.

o Procedural Content Generation (PCG);

o Tools for game designer support;

o …



DL Applications in Games (2)

• For this research, we considered
its application to model the 
behaviour of game agents.

• Efforts in this sense mainly align
along two directions:

o Non-Player Character (NPC) 
Behaviour Modeling;

o General Video Games AI 
(GVGAI).



Classification

• Per Learning Paradigm:

o Supervised Learning

o Reinforcement Learning

o Evolutionary Learning

• Per Game Genre:

o Arcade games

o Racing games

o First-Person Shooters

o Real-Time Strategy games



Open issues
• GVGAI for playing multiple diverse 

games;

• Learning to play games with very
sparse rewards;

• Respecting computational and 
stability constraint for industry
application;

• Human-like game playing (agents’ 
believability);

• Agents with adjustable level of 
performance.



Research Topic



Why Racing Games?

• AI in Racing Games currently
«cheats» the player.

o Simplified physics and vehicle 
model.

o AI basically performs actions that 
are impossible for the player.

• Adversarial contexts are handled
according to simple heuristics. Example: Forza Motorsport 7 (2017)



Three opportunities for 
innovation

• Player Emulation

o The agent learns the player’s driving style to be able to substitute him in different contexts.

• Player Support

o The agent teaches the player how to drive or which components setting is better for a given track.

• Player Evaluation

o The agent functions as a race judge, evaluates guilt in conflicts or evaluating the player’s 
performance.



Main axes for classification
• Agent’s output emission

o Discrete

o Continuous

• Agent’s input representation

o Fully visual (maps images to 
actions)

o Fully sensorial (maps sensor data 
to actions)

o Hybrid (maps images to data, then
data to actions)



Research opportunities

• Efficiently handling the «real» physical model.

o Main research focus on mastering the task.

o Industry’s feasibility constraints are usually not considered.

• Management of group adversarial contexts.

o Poorly explored research direction.



Research Project Structure



Project proposal
The research project has the objective to possibly
tackle both issues:

• Main focus on efficient individual racing;

• Secondary focus on adversarial contexts
management.

Ultimately, the goals are:

• Design an effective neural network 
architecture and learning paradigm;

• Apply the network in a real game (Racecraft by 
Vae Victis) and exploit previous knowledge.



Project structure

The project is structured in 4 main tasks:

• Architecture Design

• Implementation

• Experiments

• Writing



Architecture Design

This task mainly concerns the definition of the network topology and the 
learning paradigm.

Consequently, in can be divided in two sub-tasks:

• Representation and domain knowledge integration;

• Learning paradigm engineering.



Representation and domain knowledge integration

• Definition of input-output shape based on domain knowledge.

o From TORCS research community;

o From a collaboration with Vae Victis.

• Two main direction of exploration:

o Input: Image / Image + Data;

o Output: Direct / Layered (Hierarchical).



Racing line approach

• An optimal “racing line” is 
attached to the track.

• The AI tries to follow it as 
precisely as possible.

• Input: current status (blue vector) 
+ target position and speed 
(green point).

• Output: control action.

• Might involve heuristics and 
approximations.



Learning paradigm engineering

This task mainly concerns the definition of the approach to use for training.

• A possibility is a hybrid supervised-reinforcement learning approach.

• The company’s track generation feature can be exploited to obtain diverse 
training data.



Implementation

This tasks includes both prototyping of the different network designs and the 
choice for implementation language and tools.

• Different designs will be compared to derive the most efficient topology for 
our goals;

• Tools choice will have an impact on integration with testing benchmarks.



Experiments

This task will actually involve the experimentation on the derived prototype
networks.

• Evaluation of prototypes.

• Evaluation of the final work.



Performance metrics

• Performance

o How well does the agent perform compared to other techniques?

• Preliminary user study

o What is the players’ opinion on the agent’s performance?

• Agent versus player comparison

o How coherently does the agent react to human behaviour?



Tentative schedule

• The tasks stretch along different periods.

• Some tasks require feedback from others, thus they require interruptions.



Emilio Capo
emilio.capo@mail.polimi.it

Computer Science and Engineering (CSE)


