
Politecnico di Milano • Honours Programme • November 2018 • CSE Track

State of the Art on: Deep Learning

for Video Games AI Development

Emilio Capo, emilio.capo@mail.polimi.it

1. INTRODUCTION TO THE RESEARCH TOPIC

With the recent advancements in machine learning and, specifically, deep learning
techniques, video games applications for AI research are becoming more and more popular,
as they prove to be very useful testbeds for general AI algorithms evaluation [1]. At the
same time, the need for a step forward in AI development, considering that the videogame
industry has now reached an audience comparable to that of music and movies, is strongly
perceived by both game developers and players. The former aim at building more complex
and entertaining experiences, which in terms brings the latter to push for a higher
believability and coherency of the game worlds they explore. Thanks to the amount of data
that is being gathered on many video games, experiments showed how promising deep
learning proves to be in this direction [2].

Some of the most important venues of the field are the IEEE Conference on Computational
Intelligence and Games (CIG), the AAAI Artificial Intelligence and Interactive Digital
Entertainment (AIIDE) and the IEEE Transactions on Games (ToG) (previously IEEE
Transactions on Computational Intelligence and AI in Games). These are cited in [3] by
Georgios N. Yannakakis and Julian Togelius, two prominent games AI researchers.

Most other influential venues are cited in [4].

1.1. Preliminaries

The field is strongly based on statistics and on the mathematical model known as Neural
Network (NN), a graph model that mimics the structure of the human brain, using a series
of nodes (neurons), organized in layers that exchange information with each other. The
number of layers represents the abstraction power of the neural network.
Deep learning is based on the idea of using a high number of layers to improve the network
abstraction capabilities. After its first applications in Convolutional NN (CNN), largely used
in image analysis, a temporal component was added in Long Short-Term Memory NN
(LSTM) [5], where some memory of previously elaborated data is stored. The resulting
network is then trained according to four main paradigms:

• Supervised Learning (SL), which requires a large and representative set of examples
(input-output pairs) to learn from;

• Adversarial Learning (AL), which exploits the aid of a second neural network that is
trained to generate more and more diverse examples for the first one;

• Evolutionary Learning (EV), which lets the most efficient network arise by sequentially
evaluating the fitness and combining the members of a population;

mailto:emilio.capo@mail.polimi.it

• Reinforcement Learning (RL), which stimulates learning through a reward system, where
effective actions are rewarded, while ineffective actions are punished;

The latter is mostly used in games AI in the form of Q-Learning. Networks that are trained
this way are referred to as Deep Q Networks (DQN) [6].

Implementation tools include, on one hand, general libraries and toolkits (TensorFlow,
PyTorch, OpenAI Gym) for artificial intelligence and machine learning applications.
Integrated with many game engines (Unity, Unreal Engine), libraries allow researchers to
rapidly build controllable environments for their experiments.

On the other hand, there are frameworks that offer interesting learning environments,
together with the necessary APIs to interact with them. Their extensive use consolidated
them as benchmarks for games AI applications. Some of the most famous examples are:

• Arcade Learning Environment (ALE) [7], an object-oriented environment that offers more
than 50 different Atari video games to develop AI agents on; mostly used for General
Video Game Artificial Intelligence (GVGAI) applications;

• VizDoom [8], a reinforcement learning environment based on the video game “Doom”;
focusing the learning process on raw visual data, it is thus suited for deep reinforcement
learning applications;

• TORCS [9], an AI research platform for car racing agents in a 3D environment, primarily
focused on visual reinforcement learning; it offers built-in data structures for neural
networks applications;

Other examples are Ms. Pac-Man [10], Project Malmo [11] and Brood War API (BWAPI) [12].

1.2. Research Topic

Artificial intelligence applications in games branch into ten major areas [2]. For deep
learning, we mainly identify two of them.

On one hand, the limits arising from traditional artificial intelligence techniques (such as
search and planning) in commercial games are becoming more and more evident. Deep
learning applications in Non-Player Character (NPC) behaviour learning, whose focus is to use
RL techniques to learn policies/behaviors to efficiently play games, hold the promise of
generating more interesting and coherent entities for the players to engage with. This would
help create believable agents, that is agents who appear to have human-like characteristics,
which would in turn increase the quality of computational narrative.

On the other hand, video games provide enough diversity in simulation environments to
constitute an efficient first step towards a human-level domain-general artificial
intelligence. The subfield of General game AI has thus the objective to create agents that are
capable of playing different games. This would allow AI to become detachable from games
and, eventually, it would be possible to build AI engines that can be used for different
games, similarly to how game engines are used. The focus is currently on Atari games
available on the Arcade Learning Environment.

Other areas where deep learning is being used as an aid are player modelling, Procedural
Content Generation (PCG) and AI-assisted tools for game design.

2. MAIN RELATED WORKS

2.1. Classification of the main related works

The current works on deep learning applied to games can be mainly classified along two
dimensions [13]. One is that of the learning paradigm used to train the network; the other is
the game genre we are considering for our application.

2.1.1 Classification per learning paradigm

There are three main learning paradigms used in this field: supervised learning,
reinforcement learning and evolutionary learning.

The supervised learning paradigm is mainly used to let agents learn a behaviour from data
recorded either from human players or from algorithms that play the game well. The
network can also be a support for other techniques by predicting the next most probable
game state given the current one. Other algorithms can then determine the best action to
take. The main issues related to this paradigm are size and representativeness of the data
set at hand. Without a sufficient amount of data coming from a sufficiently wide portion of
the state space, supervised learning cannot be efficiently applied.

The reinforcement learning paradigm stimulates learning through environment exploration
and interaction. This paradigm can be easily applied to games by modeling them as
environments in a RL setting, where players have a certain number of actions at their
disposal, whose combination determines their success. The reward function can often be
identified by the game score itself. The issue with its application to games is that it must rely
on model-free techniques, such as Q-learning and SARSA, because a full exploration of such
complex environments in reasonable time is computationally unfeasible.

The evolutionary learning paradigm has been used for different tasks in games. It was used
as a support for search strategies to evaluate hypothetical future game states, applied to
games such as Checkers and Go. Differently, it was used to directly select actions for car
driving agents and shooter games. Its limitations mainly concern learning from high-
dimensional data, whom evolution can’t seem to be able to deal with, and its application to
general video games AI, which has been seriously understudied, in spite of evolution
generalization capabilities.

2.1.2 Classification per game genre

Performing an analysis by game genre reveals how some genres are preferred to others in
some specific applications.

For instance, arcade games have been primarily used for General Video Game AI (GVGAI)
applications, thanks to their relatively simple structure and the variety they offer. These
games, available on the ALE framework, all share some characteristics, such as a
continuous-time progression and either continuous or discrete space movement, but also
differ in the skills required to play them, sometimes significantly. Some games require fast
reaction and timing, some others require prediction of the behaviour of some elements in
the game, and some even require maze navigation or long-term planning.

In racing games, the player has to control a vehicle, usually with the objective to reach a given
goal in the shortest time. The main purpose of DL applications to this genre is to create an

agent that can efficiently drive the car, providing a continuous output, that is the steering
output, given as input either sensor data or raw pixels (or even both). Sometimes, learning
is complicated by resource management (fuel, wheels durability) or by adversarial contexts
(driving against other agents). The main platform used for this kind of experimentation is
TORCS.

First-Person Shooters (FPS) often offer partially-observable 3D environments for developing
visual RL agents. Featuring an over-the-shoulders viewpoint, their primary challenge is fast
reaction to enemy sighting, but they also require efficient tridimensional space exploration,
as well as prediction of enemy behaviour and resource location. The main platform for such
experiments is VizDoom.

Offering an even harder challenge than their board counterparts, Real-Time Strategy (RTS)
games require careful planning and managements of different kinds of units at the same
time, in order to obtain diversified resources and, eventually, defeat the opponent. These
games feature an enormous branching factor, as well as long planning to produce effective
results. Most efforts in this direction are applied to the BWAPI framework.

Other game genres are open-world games, which require management of large freedom of
action and selecting meaningful goals, and sports games, whose focus is largely on
cooperation and coordination.

2.2. Brief description of the main related works

We will now proceed to a quick analysis of the main related works [13], specifying how they
fit in the above-defined classification.

The most used topology across all genres is CNN, meaning that most works are based on a
visual input of the game state. This topology is usually combined with a RL paradigm (Q-
learning, specifically), resulting in a DQN architecture. Its main feature is experience replay,
where some experiences are sampled from a batch during update, allowing to learn from
past and uncorrelated experiences. From its first basic application [6], DQNs have been
extended thanks to its widespread use in arcade games. A recurrent component (DRQN) [16],
considering some time information, showed to benefits the network in case of partially-
observable games. A distributed implementation outperformed the standard one in most
games [17]. Double DQNs [18] solved the issue of action-value function overestimation. A
technique called prioritized experience replay allowed to sample more frequently the
samples that turned out to be more significant, which improved both standard and double
DQNs [19]. Dueling DQNs separately estimate the value function and an action-advantage
function [20]. Bootstrapped DQNs improved the exploration policy and, thus, the training
time required to train multiple networks [21]. Some multi-threaded asynchronous variances
have also been tested (A3C) [22]. Another algorithm, called UNREAL, exploits a replay
memory from which it learns auxiliary tasks and pseudo-reward functions [23]. NoisyNets
replace the ε-greedy policy with the exploration of a noisy version of the network,
improving both DQN and A3 [24]. Finally, the Rainbow technique combines different of the
above-mentioned enhancements, achieving a mean score higher than any of the
enhancements individually [25].

In racing games, we can identify two main paradigms for vision-based autonomous driving:
learning image-action mapping directly or mediated learning through sensor data. An in-
between approach is direct perception, where images are mapped to data that is then used

to make decisions [26]. This method can produce systems that can drive in diverse
environments and even generalize to real images. DQNs cannot be applied to continuous
domains such as that of racing games, thus other RL techniques such as policy gradient
method are preferred. These include actor-critic [27] and Deterministic Policy Gradient
(DPG) [28]. Deep DPG and A3C have been applied to TORCS showing quite positive results
[22] [29].

In FPS, human-level capabilities were reached using a CNN with max-pooling and fully
connected layer trained with a DQN applied to VizDoom [30]. Another successful method
used a CNN trained with A3C [31]. Significant improvements in exploration, an extensively
studied important skill for FPS, were reached using a combination of CNN and LSTM
trained with A3C [32]. Applications of UNREAL, specifically to gathering tasks in Open
Arena, showed even better results than A3C [23].

Applications to RTS games mainly focus on subproblems, given the complexity of
controlling different agents at the same time in a world without any in-game scoring system.
Through the BWAPI framework, the problem of micromanagement was tackled using CNN
combined with MCTS, exploiting combat damage as a reward function [15] [33]. Other
applications include Independent Q-Learning (IQL), which efficiently managed the multi-
agent RL problem [34]; the Multiagent Bidirectionally-Coordinated Network (BiC-Net),
based on a recurrent NN [35]; Counterfactual Multi-Agent (COMA) policy gradients, which
is an actor-critic method [36]. Some applications in macromanagement, such as prediction
of human strategy choices using SL techniques, efficiently enhanced in-game bots [37].

2.3. Discussion

Currently, deep learning techniques applied to video games face many open challenges.

From an industry viewpoint, the task of designing a deep learning AI that requires a
reasonable amount of computational resources and can be easily integrated is further
complicated by business and revenue requirements. A black-box technology that is so
unpredictable can easily produce unwanted NPC behaviours that could ruin the game
experience, as well as complicate the Q.A. fine-tuning and testing process, hardly allowing
for specific skill level tuning. It is thus not surprising that the industry is still exploiting as
much as possible more stable and reliable methods, such as search and planning techniques.

The problem of meeting the industry feasibility requirements is mainly related to the
complexity of defining an input that is at the same time informative and simple enough to
be managed and produce an output in a reasonable amount of time. Similarly, high
dimensional output space could be tackled by designing high-level actions.

On the other hand, having a large amount of high-quality data to train these agents can
often make the difference in supervised settings. For reinforcement learning, an efficient
design of reward function, as well as representative episodes to learn from, constitute the
basis for agent training. When dealing with games with very sparse rewards, such as
Montezuma’s Revenge, RL through a hierarchical implementation of DQL [14] barely
reached 10% of the performances of a human-expert player.

Finally, in GVGAI great progress was made by introducing progressive NNs, which allow
to learn to play new games without forgetting old ones. However, this method still requires
one separate network per task, so further future developments could improve this point.

REFERENCES

[1] J. Togelius. AI Researchers, Video Games Are Your Friends! Volume 669 2017,
 Springer.

[2] V. Mnih et al. Human-level control through deep reinforcement learning.
 Nature 518, 529–533 (2015).

[3] G. N. Yannakakis and J. Togelius. A Panorama of Artificial and Computational
 Intelligence in Games. 2014, IEEE Transactions on Computational
 Intelligence and AI in Games.

[4] http://www.kmjn.org/game-rankings/

[5] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang. Deep learning for real-time atari
 game play using offline monte-carlo tree search planning. In Advances in neural
 information processing systems, pages 3338–3346, 2014.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M.
 Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
 arXiv:1312.5602, 2013.

[7] ALE Github Repository: https://github.com/mgbellemare/Arcade-Learning-
 Environment

[8] VizDoom Official Website: http://vizdoom.cs.put.edu.pl/

[9] TORCS Official Website: http://torcs.sourceforge.net/

[10] Ms. Pac-Man Competition Website: http://www.pacmanvghosts.co.uk/

[11] Project Malmo page on Microsoft Website: https://www.microsoft.com/en-us/
 research/project/project-malmo/

[12] BWAPI Github Repository: https://github.com/bwapi/bwapi

[13] N. Justesen, P. Bontrager, J. Togelius and S. Risi. Deep Learning for Video Game
 Playing.

[14] T. D. Kulkarni, K. Narasimhan, A. Saeedi, and J. Tenenbaum. Hierarchical deep
 reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In
 Advances in Neural Information Processing Systems, pages 3675–3683, 2016.

[15] N. A. Barriga, M. Stanescu, and M. Buro. Combining strategic learning and tactical
 search in real-time strategy games. arXiv preprint arXiv:1709.03480, 2017.

[16] M. Hausknecht and P. Stone. Deep recurrent q-learning for partially observable mdps.
 arXiv preprint arXiv:1507.06527, 2015.

[17] A. Nair, P. Srinivasan, S. Blackwell, C. Alcicek, R. Fearon, A. De Maria, V.
 Panneershelvam, M. Suleyman, C. Beattie, S. Petersen, et al. Massively parallel
 methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

[18] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-
 learning. In AAAI, pages 2094–2100, 2016.

http://www.kmjn.org/game-rankings/
https://github.com/mgbellemare/Arcade-Learning-%20%20%20%20%20%20%20%20%20%20Environment
https://github.com/mgbellemare/Arcade-Learning-%20%20%20%20%20%20%20%20%20%20Environment
http://vizdoom.cs.put.edu.pl/
http://torcs.sourceforge.net/
http://www.pacmanvghosts.co.uk/
https://www.microsoft.com/en-us/%20%20%20%20%20%20%20%20%20research/project/project-malmo/
https://www.microsoft.com/en-us/%20%20%20%20%20%20%20%20%20research/project/project-malmo/
https://github.com/bwapi/bwapi

[19] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized experience replay. arXiv
 preprint arXiv:1511.05952, 2015.

[20] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas. Dueling
 network architectures for deep reinforcement learning. arXiv preprint
 arXiv:1511.06581, 2015.

[21] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy. Deep exploration via bootstrapped
 DQN. In Advances In Neural Information Processing Systems, pages 4026–4034, 2016.

[22] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K.
 Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In
 International Conference on Machine Learning, 2016.

[23] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K.
 Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. arXiv
 preprint arXiv:1611.05397, 2016.

[24] M. Fortunato, M. G. Azar, B. Piot, J. Menick, I. Osband, A. Graves, V. Mnih, R. Munos,
 D. Hassabis, O. Pietquin, et al. Noisy networks for exploration. arXiv preprint
 arXiv:1706.10295, 2017.

[25] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
 B. Piot, M. Azar, and D. Silver. Rainbow: Combining improvements in deep
 reinforcement learning. arXiv preprint arXiv:1710.02298, 2017.

[26] C. Chen, A. Seff, A. Kornhauser, and J. Xiao. Deepdriving: Learning affordance for
 direct perception in autonomous driving. In Proceedings of the IEEE International
 Conference on Computer Vision, pages 2722– 2730, 2015.

[27] T. Degris, P. M. Pilarski, and R. S. Sutton. Model-free reinforcement learning with
 continuous action in practice. In American Control Conference (ACC), 2012, pages
 2177–2182. IEEE, 2012.

[28] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
 policy gradient algorithms. In Proceedings of the 31st International Conference on
 Machine Learning (ICML-14), pages 387–395, 2014. [29]

[29] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
 Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971,
 2015.

[30] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Ja´skowski. Vizdoom: A Doom-
 based AI research platform for visual reinforcement learning. arXiv preprint
 arXiv:1605.02097, 2016.

[31] Y. Wu and Y. Tian. Training agent for first-person shooter game with actor-critic
 curriculum learning. In Submitted to Intl Conference on Learning Representations,
 2017.

[32] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. Ballard, A. Banino, M. Denil, R. Goroshin,
 L. Sifre, K. Kavukcuoglu, et al. Learning to navigate in complex environments. arXiv
 preprint arXiv:1611.03673, 2016.

[33] M. Stanescu, N. A. Barriga, A. Hess, and M. Buro. Evaluating realtime strategy game
 states using convolutional neural networks. In IEEE Conference on Computational
 Intelligence and Games (CIG 2016), 2016.

[34] M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In
 Proceedings of the tenth international conference on machine learning, pages 330–337,
 1993.

[35] P. Peng, Q. Yuan, Y. Wen, Y. Yang, Z. Tang, H. Long, and J. Wang. Multiagent
 bidirectionally-coordinated nets for learning to play starcraft combat games. arXiv
 preprint arXiv:1703.10069, 2017.

[36] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual multi-
 agent policy gradients. arXiv preprint arXiv:1705.08926, 2017.

[37] N. Justesen and S. Risi. Learning macromanagement in StarCraft from replays using
 deep learning. In Computational Intelligence and Games, 2017. CIG 2017. IEEE
 Symposium on. IEEE, 2017.

