
Politecnico di Milano • Honours Programme • November 2018 • CSE Track 

State of the Art on: Deep Learning 

for Video Games AI Development 

Emilio Capo, emilio.capo@mail.polimi.it 

 

1.    INTRODUCTION TO THE RESEARCH TOPIC 

With the recent advancements in machine learning and, specifically, deep learning 
techniques, video games applications for AI research are becoming more and more popular, 
as they prove to be very useful testbeds for general AI algorithms evaluation [1]. At the 
same time, the need for a step forward in AI development, considering that the videogame 
industry has now reached an audience comparable to that of music and movies, is strongly 
perceived by both game developers and players. The former aim at building more complex 
and entertaining experiences, which in terms brings the latter to push for a higher 
believability and coherency of the game worlds they explore. Thanks to the amount of data 
that is being gathered on many video games, experiments showed how promising deep 
learning proves to be in this direction [2]. 

Some of the most important venues of the field are the IEEE Conference on Computational 
Intelligence and Games (CIG), the AAAI Artificial Intelligence and Interactive Digital 
Entertainment (AIIDE) and the IEEE Transactions on Games (ToG) (previously IEEE 
Transactions on Computational Intelligence and AI in Games). These are cited in [3] by 
Georgios N. Yannakakis and Julian Togelius, two prominent games AI researchers. 

Most other influential venues are cited in [4]. 

1.1. Preliminaries 

The field is strongly based on statistics and on the mathematical model known as Neural 
Network (NN), a graph model that mimics the structure of the human brain, using a series 
of nodes (neurons), organized in layers that exchange information with each other. The 
number of layers represents the abstraction power of the neural network. 
Deep learning is based on the idea of using a high number of layers to improve the network 
abstraction capabilities. After its first applications in Convolutional NN (CNN), largely used 
in image analysis, a temporal component was added in Long Short-Term Memory NN 
(LSTM) [5], where some memory of previously elaborated data is stored. The resulting 
network is then trained according to four main paradigms:  

• Supervised Learning (SL), which requires a large and representative set of examples 
(input-output pairs) to learn from; 

• Adversarial Learning (AL), which exploits the aid of a second neural network that is 
trained to generate more and more diverse examples for the first one; 

• Evolutionary Learning (EV), which lets the most efficient network arise by sequentially 
evaluating the fitness and combining the members of a population; 

mailto:emilio.capo@mail.polimi.it


• Reinforcement Learning (RL), which stimulates learning through a reward system, where 
effective actions are rewarded, while ineffective actions are punished; 

The latter is mostly used in games AI in the form of Q-Learning. Networks that are trained 
this way are referred to as Deep Q Networks (DQN) [6]. 

Implementation tools include, on one hand, general libraries and toolkits (TensorFlow, 
PyTorch, OpenAI Gym) for artificial intelligence and machine learning applications. 
Integrated with many game engines (Unity, Unreal Engine), libraries allow researchers to 
rapidly build controllable environments for their experiments. 

On the other hand, there are frameworks that offer interesting learning environments, 
together with the necessary APIs to interact with them. Their extensive use consolidated 
them as benchmarks for games AI applications. Some of the most famous examples are: 

• Arcade Learning Environment (ALE) [7], an object-oriented environment that offers more 
than 50 different Atari video games to develop AI agents on; mostly used for General 
Video Game Artificial Intelligence (GVGAI) applications; 

• VizDoom [8], a reinforcement learning environment based on the video game “Doom”; 
focusing the learning process on raw visual data, it is thus suited for deep reinforcement 
learning applications; 

• TORCS [9], an AI research platform for car racing agents in a 3D environment, primarily 
focused on visual reinforcement learning; it offers built-in data structures for neural 
networks applications; 

Other examples are Ms. Pac-Man [10], Project Malmo [11] and Brood War API (BWAPI) [12]. 

1.2. Research Topic 

Artificial intelligence applications in games branch into ten major areas [2]. For deep 
learning, we mainly identify two of them. 

On one hand, the limits arising from traditional artificial intelligence techniques (such as 
search and planning) in commercial games are becoming more and more evident. Deep 
learning applications in Non-Player Character (NPC) behaviour learning, whose focus is to use 
RL techniques to learn policies/behaviors to efficiently play games, hold the promise of 
generating more interesting and coherent entities for the players to engage with. This would 
help create believable agents, that is agents who appear to have human-like characteristics, 
which would in turn increase the quality of computational narrative. 

On the other hand, video games provide enough diversity in simulation environments to 
constitute an efficient first step towards a human-level domain-general artificial 
intelligence. The subfield of General game AI has thus the objective to create agents that are 
capable of playing different games. This would allow AI to become detachable from games 
and, eventually, it would be possible to build AI engines that can be used for different 
games, similarly to how game engines are used. The focus is currently on Atari games 
available on the Arcade Learning Environment. 

Other areas where deep learning is being used as an aid are player modelling, Procedural 
Content Generation (PCG) and AI-assisted tools for game design. 



2.    MAIN RELATED WORKS 

 

2.1. Classification of the main related works 

The current works on deep learning applied to games can be mainly classified along two 
dimensions [13]. One is that of the learning paradigm used to train the network; the other is 
the game genre we are considering for our application. 

2.1.1 Classification per learning paradigm 

There are three main learning paradigms used in this field: supervised learning, 
reinforcement learning and evolutionary learning. 

The supervised learning paradigm is mainly used to let agents learn a behaviour from data 
recorded either from human players or from algorithms that play the game well. The 
network can also be a support for other techniques by predicting the next most probable 
game state given the current one. Other algorithms can then determine the best action to 
take. The main issues related to this paradigm are size and representativeness of the data 
set at hand. Without a sufficient amount of data coming from a sufficiently wide portion of 
the state space, supervised learning cannot be efficiently applied. 

The reinforcement learning paradigm stimulates learning through environment exploration 
and interaction. This paradigm can be easily applied to games by modeling them as 
environments in a RL setting, where players have a certain number of actions at their 
disposal, whose combination determines their success. The reward function can often be 
identified by the game score itself. The issue with its application to games is that it must rely 
on model-free techniques, such as Q-learning and SARSA, because a full exploration of such 
complex environments in reasonable time is computationally unfeasible. 

The evolutionary learning paradigm has been used for different tasks in games. It was used 
as a support for search strategies to evaluate hypothetical future game states, applied to 
games such as Checkers and Go. Differently, it was used to directly select actions for car 
driving agents and shooter games. Its limitations mainly concern learning from high-
dimensional data, whom evolution can’t seem to be able to deal with, and its application to 
general video games AI, which has been seriously understudied, in spite of evolution 
generalization capabilities.  

2.1.2 Classification per game genre 

Performing an analysis by game genre reveals how some genres are preferred to others in 
some specific applications. 

For instance, arcade games have been primarily used for General Video Game AI (GVGAI) 
applications, thanks to their relatively simple structure and the variety they offer. These 
games, available on the ALE framework, all share some characteristics, such as a 
continuous-time progression and either continuous or discrete space movement, but also 
differ in the skills required to play them, sometimes significantly. Some games require fast 
reaction and timing, some others require prediction of the behaviour of some elements in 
the game, and some even require maze navigation or long-term planning. 

In racing games, the player has to control a vehicle, usually with the objective to reach a given 
goal in the shortest time. The main purpose of DL applications to this genre is to create an 



agent that can efficiently drive the car, providing a continuous output, that is the steering 
output, given as input either sensor data or raw pixels (or even both). Sometimes, learning 
is complicated by resource management (fuel, wheels durability) or by adversarial contexts 
(driving against other agents). The main platform used for this kind of experimentation is 
TORCS. 

First-Person Shooters (FPS) often offer partially-observable 3D environments for developing 
visual RL agents. Featuring an over-the-shoulders viewpoint, their primary challenge is fast 
reaction to enemy sighting, but they also require efficient tridimensional space exploration, 
as well as prediction of enemy behaviour and resource location. The main platform for such 
experiments is VizDoom. 

Offering an even harder challenge than their board counterparts, Real-Time Strategy (RTS) 
games require careful planning and managements of different kinds of units at the same 
time, in order to obtain diversified resources and, eventually, defeat the opponent. These 
games feature an enormous branching factor, as well as long planning to produce effective 
results. Most efforts in this direction are applied to the BWAPI framework. 

Other game genres are open-world games, which require management of large freedom of 
action and selecting meaningful goals, and sports games, whose focus is largely on 
cooperation and coordination. 

2.2. Brief description of the main related works 

We will now proceed to a quick analysis of the main related works [13], specifying how they 
fit in the above-defined classification. 

The most used topology across all genres is CNN, meaning that most works are based on a 
visual input of the game state. This topology is usually combined with a RL paradigm (Q-
learning, specifically), resulting in a DQN architecture. Its main feature is experience replay, 
where some experiences are sampled from a batch during update, allowing to learn from 
past and uncorrelated experiences. From its first basic application [6], DQNs have been 
extended thanks to its widespread use in arcade games. A recurrent component (DRQN) [16], 
considering some time information, showed to benefits the network in case of partially-
observable games. A distributed implementation outperformed the standard one in most 
games [17]. Double DQNs [18] solved the issue of action-value function overestimation. A 
technique called prioritized experience replay allowed to sample more frequently the 
samples that turned out to be more significant, which improved both standard and double 
DQNs [19]. Dueling DQNs separately estimate the value function and an action-advantage 
function [20]. Bootstrapped DQNs improved the exploration policy and, thus, the training 
time required to train multiple networks [21]. Some multi-threaded asynchronous variances 
have also been tested (A3C) [22]. Another algorithm, called UNREAL, exploits a replay 
memory from which it learns auxiliary tasks and pseudo-reward functions [23]. NoisyNets 
replace the ε-greedy policy with the exploration of a noisy version of the network, 
improving both DQN and A3 [24]. Finally, the Rainbow technique combines different of the 
above-mentioned enhancements, achieving a mean score higher than any of the 
enhancements individually [25]. 

In racing games, we can identify two main paradigms for vision-based autonomous driving: 
learning image-action mapping directly or mediated learning through sensor data. An in-
between approach is direct perception, where images are mapped to data that is then used 



to make decisions [26]. This method can produce systems that can drive in diverse 
environments and even generalize to real images. DQNs cannot be applied to continuous 
domains such as that of racing games, thus other RL techniques such as policy gradient 
method are preferred. These include actor-critic [27] and Deterministic Policy Gradient 
(DPG) [28]. Deep DPG and A3C have been applied to TORCS showing quite positive results 
[22] [29]. 

In FPS, human-level capabilities were reached using a CNN with max-pooling and fully 
connected layer trained with a DQN applied to VizDoom [30]. Another successful method 
used a CNN trained with A3C [31]. Significant improvements in exploration, an extensively 
studied important skill for FPS, were reached using a combination of CNN and LSTM 
trained with A3C [32]. Applications of UNREAL, specifically to gathering tasks in Open 
Arena, showed even better results than A3C [23]. 

Applications to RTS games mainly focus on subproblems, given the complexity of 
controlling different agents at the same time in a world without any in-game scoring system. 
Through the BWAPI framework, the problem of micromanagement was tackled using CNN 
combined with MCTS, exploiting combat damage as a reward function [15] [33]. Other 
applications include Independent Q-Learning (IQL), which efficiently managed the multi-
agent RL problem [34]; the Multiagent Bidirectionally-Coordinated Network (BiC-Net), 
based on a recurrent NN [35]; Counterfactual Multi-Agent (COMA) policy gradients, which 
is an actor-critic method [36]. Some applications in macromanagement, such as prediction 
of human strategy choices using SL techniques, efficiently enhanced in-game bots [37]. 

2.3. Discussion 

Currently, deep learning techniques applied to video games face many open challenges. 

From an industry viewpoint, the task of designing a deep learning AI that requires a 
reasonable amount of computational resources and can be easily integrated is further 
complicated by business and revenue requirements. A black-box technology that is so 
unpredictable can easily produce unwanted NPC behaviours that could ruin the game 
experience, as well as complicate the Q.A. fine-tuning and testing process, hardly allowing 
for specific skill level tuning. It is thus not surprising that the industry is still exploiting as 
much as possible more stable and reliable methods, such as search and planning techniques. 

The problem of meeting the industry feasibility requirements is mainly related to the 
complexity of defining an input that is at the same time informative and simple enough to 
be managed and produce an output in a reasonable amount of time. Similarly, high 
dimensional output space could be tackled by designing high-level actions. 

On the other hand, having a large amount of high-quality data to train these agents can 
often make the difference in supervised settings. For reinforcement learning, an efficient 
design of reward function, as well as representative episodes to learn from, constitute the 
basis for agent training. When dealing with games with very sparse rewards, such as 
Montezuma’s Revenge, RL through a hierarchical implementation of DQL [14] barely 
reached 10% of the performances of a human-expert player. 

Finally, in GVGAI great progress was made by introducing progressive NNs, which allow 
to learn to play new games without forgetting old ones. However, this method still requires 
one separate network per task, so further future developments could improve this point. 
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