Paper Presentation: Short-Term Trajectory Planning in TORCS using Deep Reinforcement Learning

Emilio Capo emilio.capo@mail.polimi.it Computer Science and Engineering (CSE)

Outline

Experimental Setup

Motivations

The Industry's Need for Coherent AI

Believability of racing games

- **Physics:** High quality of simulation (aerodynamics, weather, collisions, ...)
- Graphics: Aiming at photorealism
- Real Pilots & Cars

The problem of AI

- **Complexity of Simulation:** Developing an artificial agent is an hard task
- **Simplified Physics:** Using simplified physics models leads to incoherent behaviour

Racing AI: General Approach

Problem and Solution Design

Motivations

Racing AI: General Approach

Problem and Solution Design

Motivations

Deep Reinforcement Learning

Promising Approach

- Solved Complex Problems (Go, DOTA, ...)
- Simplifies Development

Deep Learning

Management of large input spaces

Huge amount of data needed

Experimental Setup

Racing AI: General Approach

Problem and Solution Design

Motivations

Racing AI: Our Approach

Motivations

Problem and Solution Design

Problem and Solution Design

The Open Racing Car Simulator (TORCS)

Open-Source Racing Simulator

- **Different Game Modes:** Practice, competition, etc. •
- **Physics Engine:** Aerodynamics, traction, fuel, etc. \bullet

Client-Server Architecture

- **Server:** Wrapper providing numerical information to \bullet the client about the race (car, opponents, etc.)
- **Client:** Driving logic taking decisions based on the information received from the server

3: Iliaw 6

Results

Reinforcement Learning Scheme

Critical Aspects

State Representation: The information the agent can use to take decisions;

Motivations

Problem and Solution Design

Experimental Setup

Critical Aspects

- **State Representation:** The information the ulletagent can use to take decisions;
- Action Space: How the agent can interact ulletwith the environment;

Motivations

Problem and Solution Design

Critical Aspects

- **State Representation:** The information the agent can use to take decisions;
- **Action Space:** How the agent can interact ulletwith the environment;
- **Reward Function:** How to inform the agent about ulletthe efficiency of the decisions taken.

Reinforcement Learning Scheme

Experimental Setup

Numerical Representation

- **Telemetry information:** How the agent's state is with respect to the environment
- Internal information: State of the agent itself

Angle

Motivations

Problem and Solution Design

i.	track	trackPos	speedX	speedY	speedZ	wheelSpinVel	rpm
	≺ → 19					← → 4	

29

track	trackPos	speedX	speedY	speedZ	wheelSpinVel	rpm
← → 19	•				← → 4	
		2	29			
 ,						
•••••						

Numerical Representation

- **Telemetry information:** How the agent's state is with respect to the environment
- Internal information: State of the agent itself

Hybrid Representation...

- Image: Telemetry information
- Numerical: Internal information

track	trackPos	speedX	speedY	speedZ	wheelSpinVel	rpm
← → 19					${}_{4}$	

29

Angle

Numerical Representation

- **Telemetry information:** How the agent's state is with respect to the environment
- Internal information: State of the agent itself

Hybrid Representation...

- Image: Telemetry information
- Numerical: Internal information
- ... With Racing Line Integration
- Racing Line: White
- Proximity To Racing Line: Gray

Problem and Solution Design

Motivations

track	trackPos	speedX	speedY	speedZ	wheelSpinVel	rpm
← → 19					← → 4	

29

Learning Algorithm: DDPG

Actor-Critic Method

- Actor Network: Learns the driving policy
- Critic Network: Learns actions' profitability

Core Idea

- Update the Actor towards the best actions according to the Critic
- Generate new experiences from the Actor to update the Critic

Numerical Networks

Actor Network

Motivations

Critic Network

Experimental Setup

Actor Network

Motivations

Hybrid Networks

Action Space

Single Output

• Offset from track center: [-1, 1]

Two Outputs

- Offset from track center: [-1, 1]
- Target speed correction: [-1, 1]

The Lookahead value is computed by the following logic at each step.

Lookahead Computation

LookAhead = LookBase + LookScale * currSpeed

Motivations

Problem and Solution Design

Results

Lookahead Computation

LookAhead = LookBase + LookScale * currSpeed

Forward Step

- Compute Curvatures (Local and Target)
- Compute Maximum Target Speed (Local and Target)

Lookahead Computation

LookAhead = LookBase + LookScale * currSpeed

Forward Step

- Compute Curvatures (Local and Target)
- Compute Maximum Target Speed (Local and Target)

Backward Step

Correct Current Target Speed

Lookahead Computation

LookAhead = LookBase + LookScale * currSpeed

Forward Step

- Compute Curvatures (Local and Target)
- Compute Maximum Target Speed (Local and Target)

Backward Step

Correct Current Target Speed

Heuristic

 Correct Current Target Speed according to proximity to the next corner

Lookahead Computation

LookAhead = LookBase + LookScale * currSpeed

Forward Step

- Compute Curvatures (Local and Target)
- Compute Maximum Target Speed (Local and Target)

Backward Step

Correct Current Target Speed

Heuristic

 Correct Current Target Speed according to proximity to the next corner

Agent Correction (Two-Outputs Agents)

targSpeed = targSpeed + corrDelta * speedCorr

Reward Function

Distance Raced

- *P_{curr}*: Current car position
- P_{prev} : Previous car position

Motivations

Problem and Solution Design

$\Delta distRaced = distRaced(P_{curr}) - distRaced(P_{prev})$

Experimental Setup

Reward Function

Distance Raced

- **P**_{curr}: Current car position
- P_{prev} : Previous car position

Complete Reward Function

- **Colliding** (walls or obstacles)
- **Driving backwards**
- Out of track

Motivations

$\Delta distRaced = distRaced(P_{curr}) - distRaced(P_{prev})$

 $r_t = \begin{cases} -100 & \text{if colliding or d} \\ -1 & \text{if out of track} \\ 100 \cdot \Delta distRaced & \text{otherwise} \end{cases}$ if colliding or driving backwards

Experimental Setup

Fixed Time Budget

- Each track is given a time budget
- This defines the number of steps • that can be spent on that track

Motivations

1 Batch = 5 Tracks

Experimental Setup

Fixed Time Budget

- Each track is given a time budget •
- This defines the number of steps ulletthat can be spent on that track

Uniform Experience

- All tracks are given the same total number of steps
- Avoids bias towards easier tracks

1 Batch = 5 Tracks

12 Batches

Experimental Setup

Fixed Time Budget

- Each track is given a time budget ullet
- This defines the number of steps ulletthat can be spent on that track

Uniform Experience

- All tracks are given the same total number of steps
- Avoids bias towards easier tracks

Episode Termination

- Out of time budget •
- Collision \bullet
- Driving backwards \bullet

1 Batch = 5 Tracks

12 Batches

Experimental Setup

Exploration Policy

Simple Gaussian Noise

Motivations

- **µ:** 0
- **σ:** 0.2

Update Rule

- T_{exp} : 3 batches
- *α_{max}*: 1.0
- $\alpha_{min}: 0.0$

In a preliminar experiment, we also tried to apply **Ornstein-Uhlenbeck noise** and **sine noise**, but we found no relevant advantage.

Problem and Solution Design

$a_t = \pi(s_t) + \alpha_t \varepsilon_t$

$\alpha_t \leftarrow \max\left\{\alpha_{min}, \, \alpha_t - \frac{\alpha_{max} - \alpha_{min}}{T_{exp}}\right\}$

Experimental Setup

Baselines

Randomly Initialized Networks

- Single-Output
- Two-Outputs

Low-Level Agents

- Input: Numerical/Hybrid
- **Output:** Acceleration/Brake/Steering

Experimental Setup

Baselines

Randomly Initialized Networks

- Single-Output
- Two-Outputs

Low-Level Agents

- Input: Numerical/Hybrid
- Output: Acceleration/Brake/Steering

SnakeOil

- Input: Numerical
- Rules: Fixed, Human-Designed
- Output: Low-Level

Autopia

- Input: Numerical
- Rules: Fuzzy, Human-Designed
- Output: Low-Level

Testing

Metric of Interest

• Distance raced in a fixed time

Motivations

Problem and Solution Design

Experimental Setup

Metric of Interest

• Distance raced in a fixed time

Trained Agents (LL and HL)

- Uniformly sampled checkpoints ullet
- The best checkpoint is used for testing ullet

 $p(c_i) = i$

Motivations

Problem and Solution Design

7 Checkpoints per Agent

$$mean(d_{c_i,t_i\in T_{train}}) - 0.5 \cdot std(d_{c_i,t_i\in T_{train}})$$

Experimental Setup

Metric of Interest

• Distance raced in a fixed time

Trained Agents (LL and HL)

- Uniformly sampled checkpoints ullet
- The best checkpoint is used for testing ullet

Episode Termination

- Out of time
- Collision \bullet
- Driving backwards lacksquare

 $p(c_i) = i$

Motivations

Problem and Solution Design

7 Checkpoints per Agent

$$mean(d_{c_i,t_i\in T_{train}}) - 0.5 \cdot std(d_{c_i,t_i\in T_{train}})$$

Experimental Setup

Single-Output Agents

Basics

• Improvement over random policy

Low-Level Comparison

- Improvement over LL-N (Mueda is the only exception)
- Completely overcomes LL-H

Bot Comparison

- Improvement over SnakeOil (performance and generalization)
- Suboptimal with respect to Autopia

Bot	Alsoujlak-Hill	Brondehach	Coldpeak	Citytrack	Emero-O
HL-1R	6999.64	6817.48	6224.37	6463.54	7047.4
HL-2R	6207.31	5703.68	5326.8	6297.34	6171.6
Autopia	11481.6	11593.0	11181.7	13597.8	13172.
Snake-Oil	6957.07	739.192	6930.21	6972.4	6987.1
LL-N	1112.28	705.247	1495.89	7714.61	7945.0
LL-H	127.831	192.635	270.652	338.413	215.72
HL-N1	9411.82	9310.71	9999.21	11238.2	9229.3
HL-H1	9413.05	9313.14	10002.4	<u>11238.3</u>	9230.1

Bot	Mueda-City	Petit	Ustka-City
HL-1R	6965.49	8110.44	6280.97
HL-2R	6751.92	5599.0	5910.49
Autopia	13354.1	11513.0	12689.5
Snake-Oil	6998.45	2158.2	6946.44
LL-N	9184.19	55.3047	7770.07
LL-H	218.762	109.677	9.82495
HL-N1	9041.42	9728.49	10402.0
HL-H1	9044.97	<u>9734.09</u>	10403.9

Experimental Setup

Two-Outputs Agents

Basics

• Improvement over random policy

Low-Level Comparison

- Improvement over LL-N (completely)
- Completely overcomes LL-H

Bot Comparison

- Improvement over **SnakeOil** (performance and generalization)
- Suboptimal with respect to Autopia

Single Output

• Slight improvement

Bot	Alsoujlak-Hill	Brondehach	Coldpeak	Citytrack	Emero-O
HL-1R	6999.64	6817.48	6224.37	6463.54	7047.4
HL-2R	6207.31	5703.68	5326.8	6297.34	6171.6
Autopia	11481.6	11593.0	11181.7	13597.8	13172.
Snake-Oil	6957.07	739.192	6930.21	6972.4	6987.1
LL-N	1112.28	705.247	1495.89	7714.61	7945.0
LL-H	127.831	192.635	270.652	338.413	215.72
HL-N2	9486.19	9382.04	10185.0	11398.6	9314.1
HL-H2	9411.82	9310.71	9999.21	11238.2	9229.3

Bot	Mueda-City	Petit	Ustka-City
HL-1R	6965.49	8110.44	6280.97
HL-2R	6751.92	5599.0	5910.49
Autopia	13354.1	11513.0	12689.5
Snake-Oil	6998.45	2158.2	6946.44
LL-N	9184.19	55.3047	7770.07
LL-H	218.762	109.677	9.82495
HL-N2	9226.99	9829.32	10466.4
HL-H2	9041.42	9728.49	10402.0

Experimental Setup

Two-Outputs + Racing Line Agent

Basics

Improvement over random policy

Low-Level Comparison

- Improvement over LL-N (completely)
- Completely overcomes LL-H

Bot Comparison

- Improvement over **SnakeOil** (performance and generalization)
- Suboptimal with respect to Autopia

Two-Outputs Without Racing Line (HL-H2)

• Slight improvement

Bot	Alsoujlak-Hill	Brondehach	Coldpeak	Citytrack	Emero-C
HL-1R	6999.64	6817.48	6224.37	6463.54	7047.4
HL-2R	6207.31	5703.68	5326.8	6297.34	6171.6
Autopia	11481.6	11593.0	11181.7	13597.8	13172.
Snake-Oil	6957.07	739.192	6930.21	6972.4	6987.1
LL-N	1112.28	705.247	1495.89	7714.61	7945.0
LL-H	127.831	192.635	270.652	338.413	215.72
HLR	9486.19	9382.04	10185.0	11398.6	9314.1

Bot	Mueda-City	Petit	Ustka-City
HL-1R	6965.49	8110.44	6280.97
HL-2R	6751.92	5599.0	5910.49
Autopia	13354.1	11513.0	12689.5
Snake-Oil	6998.45	2158.2	6946.44
LL-N	9184.19	55.3047	7770.07
LL-H	218.762	109.677	9.82495
HLR	9226.99	9829.32	10466.4

Examples of Racing Lines

Following Simplix's Racing Line

Motivations

Problem and Solution Design

Following Learned Racing Line

More target points

- A single target point is limiting
- More points allow to build a better racing line approximation

Richer input space

- Enlarge the portion of the track visible to the agent
- This allows for a better planning \bullet

Exploration of algorithms

- Perform accurate hyperparameter tuning
- Explore other algorithms (TRPO, PPO, ...) ullet

Exploration of reward functions

- Consider embedding racing line information in the reward function
- Learning a general behaviour from specific ulletracing lines

Emilio Capo emilio.capo@mail.polimi.it Computer Science and Engineering (CSE)

