Paper Presentation:
Short-Term Trajectory Planning in

TORCS using Deep Reinforcement
Learning

Emilio Capo
emilio.capo@mail.polimi.it
Computer Science and Engineering (CSE)

X 4
(.) POLITECNICO "
SEHTI
SSEUAE MILANO 1863
in Information Technology

Outline

Problem and
Motivations Solution

Design

Experimental

Setup

Motivations

The Industry’s Need for Coherent Al

Believability of racing games

* Physics: High quality of simulation
(aerodynamics, weather, collisions, ...)

« Graphics: Aiming at photorealism

* Real Pilots & Cars

The problem of Al

 Complexity of Simulation: Developing an
artificial agent is an hard task

« Simplified Physics: Using simplified physics
models leads to incoherent behaviour

Racing Al: General Approach

Racing Line ‘ \
Computation

Target
Sampling

Following
Logic

"I
® 4

Racing Al: General Approach

Racing Line

Computation

Complexity of

track physics Target
Sampling

Complexity of : Following
vehicle physics Logic

"I
® 4

Deep Reinforcement Learning

Reinforcement Learning = = Deep Learning

* Abstraction from the environment) -+ Management of large input spaces

+ Data generated through interaction <) . Huge amount of data needed

Promising Approach

« Solved Complex Problems (Go, DOTA, ...)

« Simplifies Development

£90/1220
116 /408

Racing Al: General Approach

Racing Line

Computation

Complexity of

track physics Target
Sampling

Complexity of : Following
vehicle physics Logic

"I
® 4

Racing Al: Our Approach

Complexity of

track physics High-Level
Policy

Complexity of : Following
vehicle physics

Problem and Solution
Design

The Open Racing Car Simulator (TORCS)

4/5 - Player
Fuel: 38.1
1/

Open-Source Racing Simulator AR B

Client-Server Architecture

Time: 10:34
Penalty: 00:00
<- lliaw 6 +00:00
-> tita 7 +00:00

Different Game Modes: Practice, competition, etc.

Physics Engine: Aerodynamics, traction, fuel, etc.

Server: Wrapper providing numerical information to
the client about the race (car, opponents, etc.)

Client: Driving logic taking decisions based on the
Information received from the server

Problem and Solution Design

-
o=

_”;' ﬂ'

-~

= > .
s Lt

FPS: 60.2

Reinforcement Learning Scheme

Critical Aspects

« State Representation: The information the
agent can use to take decisions;

reward action
4 a,

LTy
5., | Environment

Problem and Solution Design

Reinforcement Learning Scheme

Critical Aspects

« State Representation: The information the
agent can use to take decisions;

action

* Action Space: How the agent can interact a,

with the environment;

Problem and Solution Design

Reinforcement Learning Scheme

Critical Aspects

« State Representation: The information the
agent can use to take decisions;

action

« Action Space: How the agent can interact a,

with the environment;

« Reward Function: How to inform the agent about
the efficiency of the decisions taken.

Problem and Solution Design

Numerical Representation

State Representation

_ _ _ Angle
Telemetry information: How the agent’s state Is {

frack

trackPos

speedX

speedy

speed’s

wheelSpinVel

rpm

with respect to the environment <

i

19

Internal information: State of the agent itself

Problem and Solution Design

Numerical Representation

State Representation

_ _ _ Angle
Telemetry information: How the agent’s state Is {

frack

trackPos

speedX

speedy

speed’s

wheelSpinVel

rpm

with respect to the environment <

19

Internal information: State of the agent itself

Problem and Solution Design

Numerical Representation

State Representation

_ _ _ Angle
Telemetry information: How the agent’s state IS {

frack

trackPos

speedX speedy speed’s wheelSpinVel

pm

with respect to the environment

19

Internal information: State of the agent itself)

Hybrid Representation...

Image: Telemetry information

Numerical: Internal information

Problem and Solution Design

29

N

State Representation

Numerical Representation

_ _ _ Angle track trackPos speedX speedy speed’s wheelSpinVel rpm
 Telemetry information: How the agent’s state Is
with respect to the environment < > y -
19 4
* Internal information: State of the agent itself) o g
Hybrid Representation... r
 Image: Telemetry information ‘
 Numerical: Internal information i

Problem and Solution Design

... With Racing Line Integration
 Racing Line: White

 Proximity To Racing Line: Gray

V.

Learning Algorithm: DDPG

Actor-Critic Method

« Actor Network: Learns the driving policy

* Critic Network: Learns actions’ profitability

Critic
[7
Value
state . -
Function action
Core ldea
« Update the Actor towards the best actions according to the Critic reward

* Generate new experiences from the Actor to update the Critic

Environment

Problem and Solution Design

Numerical Networks

Actor Network Critic Network

4) 4 2\
Dense Dense
(Size=300) (Size=300)
/) (N\)
Dense Dense Dense
(Size=600) (Size=600) (Size=600)
C I 4 N\
Dense Dense
(Size=1) (Size=600)
e T
7(st)
()
Dense
(Size=1)
\\ 4
\ 4
Q" (s;,a,)

Motivations

Hybrid Networks

Actor Network

(32 8x8 kernels,
stride=4)

Conv2D
(64 4x4 kernels,
stride=2)

S;zum
Conv2D
Dense
(Size=300) (64 2x2 kernels,

stride=1)

Dense

(Size=600) L

TN

Dense
(Size=600)

Qelty

Dense
(Size=1)

7(s;)

Problem and Solution Design

Critic Network

(32 8x8 kernels,
stride=4)

Conv2D
(64 4x4 kernels,
stride=2)

Conv2D
(64 2x2 kernels,
stride=1)

Flatten

s:xum

|

- N
Dense Dense
(Size=300) (Size=300)
-

? @—/ |
Dense Dense Dense
(Size=600) [(Size=600) } (Size=600)
TN

Dense
(Size=600)

Dense
(Size=1)

!

QI(S,,GI)

Action Space

Single Output

« Offset from track center: [-1, 1]

Two Outputs

« Offset from track center: [-1, 1]

 Target speed correction: [-1, 1]

The Lookahead value is computed by the following
logic at each step.

Problem and Solution Design

Offset

Lookahead

Following Logic

Lookahead Computation

LookAhead = LookBase + LookScale x currSpeed . Offset

Lookahead

Problem and Solution Design

Following Logic

f
Lookahead Computation

Look Ahead = LookBase + LookScale x currSpeed

Forward Step
 Compute Curvatures (Local and Target)

 Compute Maximum Target Speed (Local and Target)

Problem and Solution Design

Following Logic

Lookahead Computation
Look Ahead = LookBase + LookScale x currSpeed

Forward Step
 Compute Curvatures (Local and Target)

 Compute Maximum Target Speed (Local and Target)

Backward Step

* Correct Current Target Speed

Problem and Solution Design

Following Logic

Lookahead Computation
Look Ahead = LookBase + LookScale x currSpeed

Forward Step
 Compute Curvatures (Local and Target)

 Compute Maximum Target Speed (Local and Target)

Backward Step

* Correct Current Target Speed

Heuristic

« Correct Current Target Speed according
to proximity to the next corner

Problem and Solution Design

Following Logic

Lookahead Computation
Look Ahead = LookBase + LookScale x currSpeed

Forward Step
 Compute Curvatures (Local and Target)

 Compute Maximum Target Speed (Local and Target)

Backward Step

* Correct Current Target Speed

Heuristic

« Correct Current Target Speed according
to proximity to the next corner

Agent Correction (Two-Outputs Agents)

targSpeed = targSpeed + corrDelta x speedCorr

Problem and Solution Design

Reward Function

Distance Raced

 P_,.. Current car position

Adist Raced = dist Raced(Py) — dist Raced(Pyyey)

* P,y : Previous car position

Reward Function

Distance Raced

 P_,.. Current car position

Adist Raced = dist Raced(Py,) — dist Raced(Py ey)

* P,y : Previous car position

Complete Reward Function

« Colliding (walls or obstacles)

—100 it colliding or driving backwards
» Driving backwards ry =<4 —1 if out of track
» Out of track 100 - AdistRaced otherwise

Problem and Solution Design

Experimental Setup

Training

Fixed Time Budget

« Each track is given a time budget
1 Batch =5 Tracks

* This defines the number of steps
that can be spent on that track

Problem and Solution Design Experimental Setup

Training

Fixed Time Budget

« Each track is given a time budget

1 Batch =5 Tracks
* This defines the number of steps
o e _
Uniform Experience
« All tracks are given the same total]
number of steps

 Avoids bias towards easier tracks

12 Batches

Problem and Solution Design Experimental Setup

Fixed Time Budget

« Each track is given a time budget

* This defines the number of steps
that can be spent on that track

Uniform Experience

« All tracks are given the same total
number of steps

 Avoids bias towards easier tracks

Episode Termination
« QOut of time budget

 Collision

* Driving backwards

Training

1 Batch =5 Tracks

12 Batches

Problem and Solution Design Experimental Setup

Exploration Policy

Simple Gaussian Noise
e w0

. 5102 ar = m(st) + ey

Update Rule
Texp - 3 batches

* Apax- 1.0

| | | Xomar — Xmin
vy <— Inax {(l*miﬂ,a Vg — —_— }
* dnmin - 0.0 Tﬁiﬂp

In a preliminar experiment, we also tried to apply
Ornstein-Uhlenbeck noise and sine noise, but
we found no relevant advantage.

Experimental Setup

Baselines

Randomly Initialized Networks
* Single-Output

« Two-Outputs

Low-Level Agents
* Input: Numerical/Hybrid

« Qutput: Acceleration/Brake/Steering

Problem and Solution Design Experimental Setup

Baselines

Randomly Initialized Networks SnakeOll
* Single-Output * [nput: Numerical
 Two-Outputs * Rules: Fixed, Human-Designed

* Output: Low-Level

Low-Level Agents Autopia
» Input: Numerical/Hybrid * Input: Numerical
 Output: Acceleration/Brake/Steering * Rules: Fuzzy, Human-Designed

« Output: Low-Level

Experimental Setup

Testing

Metric of Interest

 Distance raced In a fixed time

Problem and Solution Design Experimental Setup

Testing

Metric of Interest

 Distance raced In a fixed time 7 Checkpoints per Agent

Trained Agents (LL and HL)

O
O
o
O
O
O
O
N
O
> O
w
O
o
N
O
S
U
O
O
o

« Uniformly sampled checkpoints

« The best checkpoint is used for testing

- mm mm mm = = Em == ==
- mm mm mm = = Em = ==

_—em e o mm o = = -

p(c?f) — mean(dczatz ETﬁrain) o 0'5) Std(dci:ti ETtra,in)

Problem and Solution Design Experimental Setup

Testing

Metric of Interest

 Distance raced In a fixed time 7 Checkpoints per Agent

Trained Agents (LL and HL)

O
O
o
O
O
O
O
N
O
> O
w
O
o
N
O
S
U
O
O
o

« Uniformly sampled checkpoints

—em e e e Em = = = =
—em e mm e o = e = -

« The best checkpoint is used for testing

_—em e o mm o = = -

Episode Termination

« Out of time
* Collision p(ci',) — mean(dczatz ETﬁT'ain) - 0'5) Std(dﬁf%:tz ETtT'a,in)

* Driving backwards

Problem and Solution Design Experimental Setup

Results

Single-Output Agents

Basics

* Improvement over random policy

Low-Level Comparison

* Improvement over LL-N (Mueda
IS the only exception)

 Completely overcomes LL-H

Bot Comparison

* Improvement over SnakeOill
(performance and generalization)

« Suboptimal with respect to Autopia

Bot Alsoujlak-Hill | Brondehach | Coldpeak | Citytrack | Emero-City
HL-1R 6999.64 6817.48 6224.37 6463.54 7047.49
HL-2R 6207.31 H703.68 5326.8 6297.34 6171.61

Autopia 11481.6 11593.0 11181.7 13597.8 13172.2
Snake-Qil 6957.07 739.192 6930.21 6972.4 6987.16

LL-N 1112.28 705.247 1495.89 7714.61 7945.07

LL-H 127.831 192.635 270.652 338.413 215.725
HL-N1 9411.82 9310.71 9999.21 11238.2 9229.33
HL-H1 9413.05 9313.14 10002.4 11238.3 9230.11

Bot Mueda-City Petit Ustka-City
HL-1R 6965.49 8110.44 6280.97
HL-2R 6751.92 5099.0 5910.49

Autopia 13354.1 11513.0 12689.5
Snake-Qil 6998.45 2158.2 6946.44

LL-N 9184.19 50.3047 7770.07

LL-H 218.762 109.677 9.82495
HL-N1 9041.42 9728.49 10402.0
HL-H1 9044.97 9734.09 10403.9

Two-Outputs Agents

Basics

* |Improvement over random policy

Low-Level Comparison
* Improvement over LL-N (completely)

 Completely overcomes LL-H

Bot Comparison

* Improvement over SnakeOill
(performance and generalization)

« Suboptimal with respect to Autopia

Single Output

« Slight improvement

Bot Alsoujlak-Hill | Brondehach | Coldpeak | Citytrack | Emero-City
HL-1R 6999.64 6817.48 6224.37 6463.54 7047.49
HL-2R 6207.31 5703.68 H326.8 6297.34 6171.61

Autopia 11481.6 11593.0 11181.7 13597.8 13172.2
Snake-Qil 6957.07 739.192 6930.21 6972.4 6987.16
LL-N 1112.28 705.247 1495.89 7714.61 7945.07
LL-H 127.831 192.635 270.652 338.413 215.725
HL-N2 9486.19 9382.04 10185.0 11398.6 9314.12
HL-H?2 9411.82 9310.71 9999.21 11238.2 9229.33
Bot Mueda-City Petit Ustka-City

HL-1R 6965.49 8110.44 6280.97

HL-2R 6751.92 5599.0 5910.49

Autopia 13354.1 11513.0 12689.5

Snake-0il 6998.45 2158.2 6946.44

LL-N 9184.19 55.3047 7770.07

LL-H 218.762 109.677 9.82495

HL-N2 9226.99 9829.32 10466.4

HL-H2 9041.42 9728.49 10402.0

Two-Outputs + Racing Line Agent

Basics

* |Improvement over random policy

Low-Level Comparison
* Improvement over LL-N (completely)

 Completely overcomes LL-H

Bot Comparison

* Improvement over SnakeOill
(performance and generalization)

« Suboptimal with respect to Autopia

Two-Outputs Without Racing Line (HL-H2)

« Slight improvement

Bot Alsoujlak-Hill | Brondehach | Coldpeak | Citytrack | Emero-City
HL-1R 6999.64 6817.48 6224.37 6463.54 7047.49
HL-2R 6207.31 5703.68 H326.8 6297.34 6171.61

Autopia 11481.6 11593.0 11181.7 13597.8 13172.2
Snake-0il 6957.07 739.192 6930.21 6972.4 6987.16
LL-N 1112.28 705.247 1495.89 7714.61 7945.07
LL-H 127.831 192.635 270.652 338.413 215.725
HLR 9486.19 9382.04 10185.0 11398.6 9314.12
Bot Mueda-City Petit Ustka-City

HL-1R 6965.49 8110.44 6280.97

HL-2R 6751.92 5599.0 5910.49

Autopia 13354.1 11513.0 12689.5

Snake-0il 6998.45 2158.2 6946.44

LL-N 9184.19 50.3047 7770.07

LL-H 218.762 109.677 9.82495

HLR 9226.99 9829.32 10466.4

Examples of Racing Lines

Following Simplix’s Racing Line Following Learned Racing Line

........

-“ lllll
'''''

oroblem and Soluton Design S——

Future Works

More target points Exploration of algorithms

* Asingle target point is limiting + Perform accurate hyperparameter tuning

* More points allow to build a better » Explore other algorithms (TRPO, PPO, ...)
racing line approximation

Richer input space Exploration of reward functions

» Enlarge the portion of the track visible to the agent * Consider embedding racing line information
In the reward function

« This allows for a better planning
* Learning a general behaviour from specific

racing lines

Emilio Capo
emilio.capo@mail.polimi.it
Computer Science and Engineering (CSE)

POLITECNICO /2o
MILANO 1863 i

in Information Technology

