Affordance Prediction with Vision via Task-Oriented Grasp Quality Metrics

Luca Cavalli luca3.cavalli@mail.polimi.it Computer Science and Engineering

- **Sense**: acquire and model data about the environment
- **Plan**: select the course of action
- Act: perform each planned action

Autonomous Robots

Sense

Plan

Affordances

Affordances

Emergent properties embodied in the relations between an animal and its environment directly connected with the possibility of action of the animal with the environment

> Michaels, C. Affordances: Four points of debate. ECOLOGICAL PSYCHOLOGY 15 (04 2003), 135–148.

Task-Oriented Grasping

Affordance Learning

Song et al. Learning task constraints for robot grasping using graphical models. IROS (2010)

Affordance Learning

Detry et al. Task-oriented grasping with semantic and geometric scene understanding. IROS (2017)

State of the Art Limitations

- Categorical expression of tasks
 - Task definition intrinsic into the dataset associated to its label
 - Not easily extensible number of different tasks
 - Not possible to fine tune the task definition

State of the Art Limitations

- Categorical expression of tasks

 - Task definition intrinsic into the dataset associated to its label • Not easily extensible number of different tasks • Not possible to fine tune the task definition

- Human labeling
 - Slow process, prevents scaling of dataset size
 - Biased towards human hand affordances
 - No guarantee on optimality

State of the Art Limitations

• Affordance function for T with object O, grasp G, and use point U:

$F_T: (O, G, U) \mapsto \mathbb{R}$

Proposed Approach

The higher the more suited (O, G, U) are for task T, e.g., for cutting

Proposed Approach

• Affordance function for T with object O, grasp G, and use point U:

$F_T: (O, G, U) \mapsto \mathbb{R}$

• **Approximated** as a function of base grasp metrics:

$$\tilde{F}_T: \phi \in \mathbb{R}^n \mapsto \mathbb{R}$$
Base grasp metrics
inferred with vision

The higher the more suited (O, G, U) are for task T, e.g., for cutting

Selected Metrics

State of the Art Metrics:

• Grasp Robustness

Geometrical Metrics:

- Rotational Inertia
- Momentum discharge efficiency
- Use local geometry

Optimization Metrics:

- Hand effort on impact
- Hand effort on hold
- Force transmitted to use

Selected Metrics

State of the Art Metrics:

• Grasp Robustness

Geometrical Metrics:

- Rotational Inertia
- Momentum discharge efficiency
- $0 \leq n_i \leq \tau_N$, • Use local geometry

Optimization Metrics:

- Hand effort on impact
- Hand effort on hold
- Force transmitted to use

Selected Affordance Functions

Beating	1: function $\tilde{F}_{beat}(\epsilon, \delta, \delta)$
	2: if $(\epsilon < \tau_{\epsilon} \mid \mid \delta < $
	3: return −∞
	4: else
	5: return $\frac{I}{E_i}$
	6: end if
	7: end function
Cutting	1: function $\tilde{F}_{cut}(\varepsilon, U_{\tau}, \varepsilon)$
Cutting	2: if $(\epsilon < \tau_{\epsilon} \mid \mid U_g)$
	3: return −∞
	4: else
	5: return U_{τ}
	6: end if
	7: end function
Picking	1: function $\tilde{F}_{pick}(E_h)$
ricking	2: return $-\sum_{i=1}^{6} E$
	3: end function

 δ, I, E_i, E_h $\delta < \tau_{\delta} \mid I \sum_{i=1}^{6} E_h[i] == \infty$) then

 u_{τ}, u_{g}) $u_{g} < \tau_{u_{g}}$) then o

h) 1 E_h[i]

Pregrasps

Decouple grasp from object through a fixed grasping policy GP:

 $GP(p_0, O) \mapsto \mathcal{G}(O)$ Initial state, the pregrasp

(b)

(c)

Simulating physics: Grasplt!

Data Collection

- Load objects from the Princeton Shape Benchmark • Extract a *random* pregrasp and use location • Simulate the random grasp on the target object

- Evaluate the metrics on the simulated grasp
- Log the pregrasp, use location and metric results

Round	core days	Samples[M]	GGS[M]	UGG[M]	UGG/obj[K]
1	350	400	20	1.25	56.82
2	280	97	91.3	5.7	259

Dataset Best: Picking

First data collection round

Second data collection round

Dataset Best: Picking

(c)

First data collection round

Second data collection round

(d)

Dataset Best: Cutting

Dataset Best: Beating

First data collection round

Second data collection round

Simulating vision

Learning Models: Xception

Exit flow

Learning Models: PointNet

Qi et al. Pointnet: Deep learning on point sets for 3d classificatino and segmentation CVPR (2017)

Learning Models: Local PointNet

• PointNet captures local geometrical patterns with no explicit notion of locality

• Bias PointNet towards capturing hierarchical local geometrical patterns like Convolutional Neural Networks do, while preserving point cloud processing

Learning Models: Local PointNet

- the resulting points
- Use the PointNet to compute point embeddings

• PointNet captures local geometrical patterns with no explicit notion of locality

• Bias PointNet towards capturing hierarchical local geometrical patterns like Convolutional Neural Networks do, while preserving point cloud processing

• Use the neighborhood of pixels in the depth image as a feature for locality of

Learning Models: Local PointNet

- the resulting points
- Use the PointNet to compute point embeddings
- image
- Use Xception to process point embeddings to the final output

• PointNet captures local geometrical patterns with no explicit notion of locality

• Bias PointNet towards capturing hierarchical local geometrical patterns like Convolutional Neural Networks do, while preserving point cloud processing

• Use the neighborhood of pixels in the depth image as a feature for locality of

• Preserve the pixel neighborhood of point embeddings from the original depth

Learning Task Separation

1:	function $\mathcal{M}^{\Phi}(g, u)$	
2:	if $\mathcal{M}^{\Phi}_{C}(g) < \tau_{C}$ then	Eva
3:	return vfail	• Fi
4:	else	cla
5:	return $\mathcal{M}^{\Phi}_{R}(g, u)$	• Tł
6:	end if	gr
7:	end function	0

- luation model built in two steps:
- irst filter stable grasps only with a general lassifier
- Then infer the specific metrics only from stable grasps with a specialized regressor

Benchmarking: Classification

1.0 -

Model code	Cross entropy	Precision	
LPN	0.3842	0.856	0.9 -
PNFULL	0.4398	0.829	
PNFO	0.4403	0.820	0.8 -
PNPO	0.4628	0.819	Precision
CNNE	0.4400	0.818	۵.7 -
PNSLIM	0.4696	0.800	
CNNL	0.5537	0.741	0.6 -
	0.4696		0.6 -

0.5

Benchmarking: Regression

Picking grasps from Vision

(a)

(c)

(e)

(h)

(i)

(j)

Picking grasps from Vision

Presentations

This work produced:

- The substance of my MSc thesis work
- International Workshop of Computational Models of Affordance for Robotics (IWCMAR) held in Montreal at ICRA 2019
- An accepted long abstract in the journal *Frontiers in Neurorobotics* about of October

• An early (submitted on 1st May) peer-reviewed accepted presentation at the Second

Computational Models of Affordance for Robotics, planning a submission by the 13th

I UIILICI J in Neurorobotics

