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1. Introduction

Research in Perception for Robotic Grasping has the objective of providing new methods for the perception
and environment modeling in Robotic Grasping. The Robotic Grasping research field tackles the problem of
autonomously planning and executing effective grasps on objects. Robotic Grasping is tightly connected with
the broader field of affordance perception, on whose definition we will be more precise in Section 1.2. The core
community is in the Robotics research area as main field of application, but connections exist also with the areas
of Computer Vision, Machine Learning and Artificial Intelligence in general as they provide fundamental tools
to tackle this problem. Analyzing the affordance perception research community we can also find significant
connections with the area of Human Computer Interaction with the aim of studying effective human-robot
collaboration, with a particular focus on language-based communication.

The main venues interested in research on Perception for Robotic Grasping are the ones dealing with robotics
and computer vision. Tables 1 and 3 show the selected top venues for Scientific Robotics, while Table 2 shows
a selection of Computer Vision conferences. Conferences have been selected by H5-index, number of received
submissions, rate of accepted submissions, review process and reviewers base, while journal selection takes into
consideration H-index, foundation year and rate of articles remained uncited after one year from publication.
The recent interest in the field of affordance perception is also witnessed by the organization of dedicated
workshops; the latests include Learning Object Affordances: a fundamental step to allow prediction, planning and tool
use? at IROS 2015 and the International Workshop on Computational Models of Affordances in Robotics at RSS 2018.

Conference Name H5-index Yearly submissions Acceptance Rate Review process Reviewers base
ICRA 75 around 2000 40-45% single blind peer review thousands
IROS 54 1500-2500 30-50% single blind peer review hundreds

RSS 49 150-250 20-40% double blind peer review tens

Table 1: Top conferences in Scientific Robotics

Conference Name H5-index Yearly submissions Acceptance Rate Review process
CVPR 158 around 3000 30% double blind peer review
ECCV 98 around 1500 25-30% double blind peer review
ICCV 89 around 1200 25-30% double blind peer review

Table 2: Top conferences in Computer Vision

1.1. Preliminaries

Fundamental tools for the grasping scientific research community come from physics, and they are used to
quantitatively evaluate the quality of a grasp given the hand model, its configuration, and contact points. These
tools are based on the definition of a Grasp Matrix G and a Hand Jacobian J . Let nc be the number of contact points
and nq be the number of joints in the hand, the Grasp Matrix G maps the object twists to the transmitted twists in
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Journal Name Foundation year H-index uncited publications after 1 year
IEEE Transactions on Robotics (T-RO) 2004 121 9.5%

International Journal of Robotics Research (IJRR) 1982 128 13.5%
Autonomous Robots 1994 91 19.46%

Journal of Field Robotics (JFR) 2006 77 19.7%

Table 3: Top journals in Scientific Robotics

each contact point, while the Hand Jacobian J maps the joint velocities to the transmitted contact twists on the
hand. Let ν be the twist of the object with respect to a global reference, νc,obj be the transmitted twists on the
object expressed with respect to each contact point, νc,hnd the same on the hand and q̇ the joint velocities, then we
have:

νc,obj = GTν

νc,hnd = Jq̇

The choice of what twists are transmitted between object and hand encodes the contact model, most used
are Point-contact-without-Friction (only normal component transmitted, and no momentum), Hard Finger (all
translational components, no momentum) and Soft Finger (all translational components and normal momentum).
These matrices only depend on the contact point geometry and hand configuration, and encode all the information
about the grasp. The quantification of the actual closure and robustness of a grasp configuration can be encoded
into a linear programming problem, and thus efficiently extracted. We refer to [14] for an in depth analysis on this
topic.

Many optimization algorithms and simulation tools have been devised around this, in particular we refer to
GraspIt! which collects a number of evaluation and optimization tools in an open simulated environment [11]. It is
nonetheless very popular to find data-driven approaches in research on grasping. No specific machine learning
model dominates the scene, but still very popular tools for grasping and affordance learning are deep learning,
reinforcement learning and bayesian approaches in general.

1.2. Research topic

The Robotic Grasping research field tackles the problem of automating grasping actions on novel objects under
different sensorimotor conditions. It follows the classical framing of sense, plan and act, thus the perception
(intended as sensing and modeling the environment) is the basis on which the following steps must base. The
challenges and opportunities of our research can be better framed in the more general context of affordance
perception. Since the first definition of affordances, by Gibson in 1966, [7] a long discussion evolved, for a complete
discussion refer to [18].

According to Michaels [10], affordances are emergent properties embodied in the relations between an animal
and its environment directly connected with the possibility of action of the animal with the environment. Applied
to robotics, affordance perception means understanding the possibility of action of a robot depending on the
possible relations between its actuators and the environment to achieve high level tasks. In this context grasping
represents an affordance for the control of some or all degrees of freedom of some object with a hand-like physical
actuator.

The possibility of having control on some degrees of freedom of objects is fundamental for robotics applications
as it is usually the main goal of actions. Moreover, in the wider context of affordances, task-oriented grasping
enables the possibility of tool use, which in turns allows an enormous range of new possibilities of action. Being
able to model and understand the environment is a critical point to plan a solid grasp, and even more to relate
the grasp with a task; for this reason research in Perception for Robotic Grasping is necessary to achieve general
task-oriented grasping.
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2. Main related works

2.1. Classification of main related works

The research community in Perception for Robotic Grasping has proposed very different and heterogeneous per-
ceptual models, within very different settings. Focusing only on the perception and modeling of the environment
we can notice a strong correlation between the perceptual basis of a model and its limitations. In particular we
classify the main related works according to the dimensionality of the vision system which models the environment:

• Blind Perception: in this category we include all systems which do not employ vision. It is important to
underline that here we mean vision in its most general sense, as any perceptual system that can provide a
global view of the environment, as a laser system could do. As such, blind systems have only access to local
information about the contact points of the fingers, with the consequent strong limitation of not being able
to plan any new grasp. The purpose of these works is usually to evaluate or improve an existing grasp to
make it more solid via contact information like local pressure maps or motors torque.

• Appearance Perception: in this category we include all systems employing at least a monocular vision
system or equivalent. They do not necessarily perceive nor model any clue of absolute spacial dimensions
and shapes on which to plan grasps, although they have some global perception of the environment.

• Geometry Perception: there are many ways a system can employ to estimate real distances and have a
notion of three-dimensional space and object shape, ranging from RGB-D cameras to model priors. All
works that perceive or model information connected with metric distances about the environment have a
clear extra opportunity as they can employ geometrical models to plan accurate grasps. Inside this broad
category we can further differentiate according to the span of the spacial model:

– Focused: these works try to estimate or consider a detailed spacial model of the object to be grasped

– Global: these works try to model the whole environment and perceive many objects at once, usually
but not necessarily with greater uncertainty than focused models.

– Mixed: these works estimate a model of the environment and also identify distinct object models and
their locations

• Physics Perception: a further dimension of perception of the environment for its understanding includes
the physical perception. Its relevance in understanding the environment comes from the predictive power of
physics as a model of the interaction with objects. As a consequence, physical quantities efficiently encode
the knowledge of the agent about the evolution of the environment in time and as such become a general
perceptive model of the "dynamic state" of objects, as shape and position encodes their spacial "static state".
In this category we deliberately leave apart the perception of local physical entities like touch pressure as
they do not provide any global information about the environment and alone should be regarded as Blind
Perception. The reason for this is the limited exploitability of such information, as already discussed in the
appropriate section.

We must notice that this classification is partially hierarchical: a model exploiting physics perception must perceive
also geometry, and in turn a model perceiving geometry also perceives appearance. The category of Blind
Perception instead includes all systems that do not access global information and thus cannot be included in the
others. When classifying a work we will label it with the most restrictive category in which it can be included.

2.1.1 Blind Perception

Blind perception research works under the assumption of knowing only local contact or joint information, with no
concern about the environment. Some works like Arimoto et al. [1, 2] deviate from the usual objective of statically
stable closures and suggest a control theory approach on two-parallel-finger grippers, which cannot achieve force
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closure statically. Although interesting, the idea is limited by the need of grippers with fine and strong finger
control and only two parallel fingers, which is impractical. As a result, the authors could validate their methods
theoretically and by simulations, but no experiment on real robots has been done.

More recent works like Dang et al. [5, 4] pose the objective of evaluating or improving a given grasp in terms of
its closure and robustness. In their first work [5] the authors provide a machine learning approach using Support
Vector Machines to evaluate the robustness of a grasp based on tactile feedback. Data are collected through
simulation, and the generalization of their approach has been tested again only in a simulated environment with a
model of the three-fingered Barrett Hand [17]. Their next work [4], instead, subsumes the task of evaluation by
trying to improve a given grasp. Dang uses the same pattern of collecting significant data from simulations and
exctracting operative knowledge from them, this time through the use of a K-nearest neighbors. By mimicing a
hand pose and joint configuration similar to the known stable grasps which are nearest to the current grasp, the
hand is supposed to end to a more robust configuration. The authors proved, with experiments on a real Barrett
hand, to randomly grasp a novel object, and they showed this blind policy can lead to significant improvements in
the robustness of grasps.

A common limitation of all these works, which is intrinsic to the category, is the inability to plan any new
grasps on objects whose position in space is not known a priori. A good opportunity, instead, comes from
the reduced (though not insignificant) uncertainty of local measurements, which allows good generalization of
simulation data to real applications.

2.1.2 Appearance Perception

The works under this category consider global knowledge of the world, but no explicit geometrical notion of
distance and space is considered. This category received very limited attention from the research community and
only few works are available as the great majority of researchers considering vision explicitly model and estimate
at least some key spacial cues.

A relevant work in this context is the one by Levine et al. [9] who trained a deep learning based controller
by leveraging on an extremely large scale data collection phase. The robots they used are arms with two-finger
grippers positioned in front of a box with different small objects, with a single RGB uncalibrated camera facing
towards the box. The learned controller had the objective of successfully gripping every time a different object
to lift it and place it back again. The authors proved that a learned controller could generalize well on different
camera illumination and calibration conditions and different finger tension or tearing levels.

This work shows that under constrained settings it is possible to extract an implicit model of the required
information for grasping from data even if the input information is extremely uncertain, variable, and incomplete.
We must still take into consideration that this approach is limited by the extreme effort in collecting the required
data and by the inability to produce a single model that generalizes over different tasks and settings.

2.1.3 Geomtry Perception

Most of the works in Robotic Grasping belong to this class, thus very different approaches and settings have been
defined. Some models extract just essential spacial information, like Kim et al. [8] who roughly estimate the
3D position of the target object from stereo vision for the first gross hand approaching movement. They use the
interesting idea of positioning a stereo camera on the hand itself, to be able to detect the target in the environment
and then focus on it while approaching, thus we can classify this work as being mixed span. Another important
contribution is the one from the MIT Princeton team at the Amazon Challenge 2017 [19]: their work has analogies
with the one from Levine [9] as it works in unstructured environments with many objects cluttered in a container,
but they use four RGB-D cameras for a more informative perception with global span and directly infer gripper or
suction affordance maps from deep models while employing simpler arm controllers to move: in this case space,
differently from Levine, is explicitly known.

Other works in this category go in the direction of grasping complex objects after the analysis of their surface.
Erkan et al. [6] propose to detect short segment edges on the surface of the object through Early Cognitive Vision
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descriptors and classify pairs of coplanar segments, according to the quality of the grasp they afford, through
semi-supervised learning. Their approach has a clearly focused span on a single object whose interesting surface
features are mapped in the space and jointly suggest grasp possibilities.

The works seen so far do successfully grasp objects, but they ignore completely that different grasps are
required for different tasks: they fix the task of grabbing and eventually moving a target object, but they can
hardly be generalized to different tasks. Biasing grasps towards the completion of some task is a key aspect for
the relevance of grasping as discussed in Section 1.2. One of the first works integrating grasp planning with tasks
is Prats et al. [13]. They use simple loaded 3D models of home objects (doors, drawers, windows) and preshapes
of standard hand configurations to enact some task encoded in physical interactions like applying force or torque
on specific degrees of freedom of the object. Their heuristic method has been successful on experiments with a
real Barrett hand with a very rough model of the target object, but still it requires a 3D model of the object and it
does not account for the high uncertainty of directly perceiving the model. We do not classify this work as Blind
Perception as it takes into account geometrical knowledge of the environment, even if endowed and not perceived,
nor it falls in the category of Physical Perception as physical quantities are used to model the task, not the object,
although through preshapes they are the primary link between a task and its associated grasp.

2.1.4 Physics Perception

The physical understanding of the environment is recently receiving attention from the Computer Vision commu-
nity, trying to estimate various quantities such as mass [16], material [15, 3] or manipulation forces [12]. However,
rarely researchers in the Robotic Grasping fields use similar techniques to physically model the environment.

A significant work in our analysis is the one by Zhu et al. [20], in the more general framework of affordance
learning, but still relevant for task-oriented grasping. They provide a model to estimate the best suited tool for a
task among the ones presented on a planar surface through vision. The task is presented to the system through a
video of a human demostrator choosing the best tool among a different set and using it to perform a task like
nutcracking. The model involves the optimization of physical quantities in imagined tool uses, and the choice
of the best area of the tool for grasping and for functional use. The method is validated through benchmarking
of the system choices compared against the ones taken by humans. The main limitation in this is the lack of an
intrinsic definition of task which would enable further elaboration and adaptation to robotic actuators which are
different from humans; moreover we miss a concrete connection between the planned grasp area on the tool and
the actual grasp pose to effectively execute the task.

2.2. Conclusions

As we have seen, the problems of evaluating the robustness of a grasp and planning grasps with perfectly
known object models have been fully assessed, while consistent research efforts are currently producing good
results towards the same problems under uncertain object models. On the contrary, the problem of task-oriented
manipulation is still an open problem in the Robotic Grasping field: few works have been attempted, lacking a
generalized framing of tasks either limiting task expressivity [20] or categorizing action possibilities [13]. Moreover,
the modeling of physical quantities, which explain the connection between actions, tools and tasks, received
almost no attention from the Robotic Grasping community and remains an unexplored opportunity.
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