Research Project Proposal: Physics from Vision for Robotic Grasping

Luca Cavalli luca3.cavalli@mail.polimi.it Computer Science and Engineering

- **Sense**: acquire and model data about the environment
- **Plan**: select the course of action
- Act: perform each planned action

Autonomous Robots

Sense

Plan

Affordances

Affordances

Emergent properties embodied in the relations between an animal and its environment directly connected with the possibility of action of the animal with the environment

> Michaels, C. Affordances: Four points of debate. ECOLOGICAL PSYCHOLOGY 15 (04 2003), 135–148.

Robotic Grasping

 Control of some or all degrees of freedom of some object with a hand-like physical actuator

Levine et al. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection, IJRR (2018)

Robotic Grasping

- Control of some or all degrees of freedom of some object with a hand-like physical actuator
- Uses:
 - Moving objects
 - Fixing objects
 - Tool use

Levine et al. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection, IJRR (2018)

Task-oriented Grasping

Model and perceive the information needed to understand the grasp:

- Object type
- Object physics
- Object affordances

Project Objectives

Grasping: State of the Art

- Act:
 - Grasp evaluation (well established)
- Plan:
 - Grasp planning (well established)
 - Uncertain model grasp planning (active)
- Sense:
 - Task-oriented grasping (open)
 - Uncertain model task-oriented grasping (open)

Grasping: Grasp Evaluation

- Grasp matrix: object twist to object twist on contacts
- Hand Jacobian: joint velocities to hand twist on contacts
- Contact models
 - Point without Friction: transmit only normal translational force
 - <u>Hard finger</u>: transmit all translational forces
 - <u>Soft finger</u>: transmit all translational forces and normal moments

Dang et al. Tactile experience-based robotic grasping, HRI (2011)

Grasping: Grasp Planning

- Grasp planning: finding stable grasps, given object and actuator
- Needed input:
 - Contact points
 - Contact models
 - **Friction** at each point (open problem!)
- Grasplt! simulator collects a suite of tools for Grasp Planning

Grasping: Uncertainty in Grasp Planning

Erkan et al. Learning probabilistic discriminative models of grasp affordances under limited supervision, IROS (2010)

Levine et al. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection, IJRR (2018)

Grasping: Task-oriented Grasping

Prats et al. Task-oriented grasping using hand preshapes and task frames, ICRA (2007)

Grasping: Uncertainty in task-oriented Grasping

Zhu et al. Understanding tools: Task-oriented object modeling, learning and recognition, CVPR (2015)

Unexplored opportunities

• Stated objectives:

- Object type
- Object physics
- Object affordances

- Unexplored opportunities:
 - Physical framing of tasks and planning
 - Physical inference from vision

Overall project structure

- Task-oriented grasping: plan grasps based on physics of objects and tasks
- Physics from Vision: infer physical quantities about the environment
- World representation: probabilistic representation of the environment

RESEARCH TIMELINE	Nov 2	2018	Dec	2018	Jan 2019	Feb	2019	Mar 2019	Apr 2019	May 2019	Jun 2019	Jul 2019
World Representation						1						
Physics from Vision												
Task-oriented grasping												
Whole system evaluation												

World representation

- Objectives:
 - Online 3D modeling of environment with uncertainty
 - Identify separate objects from background
 - Attach arbitrary knowledge to the model
 - Track rigid body motion
- Evaluation:
 - Full reconstruction of moving objects

RESEARCHTIMELINE	Nov 20	18 Dec	2018	Jan 2019	Feb 2019	Mar 2019	Apr 2019	May 2019	Jun 2019	Jul 2019
World Representation										
Physics from Vision										
Task-oriented grasping										
Whole system evaluation										

Images from www.open3d.org

World representation

- 3D reconstruction: RGB-D to pointcloud to mesh
- Uncertainty model: mesh points are multivariate gaussians
- Online update: successive pointcloud samples update mean and variance of nearest mesh points
- Movement tracking: visual features (like SIFT)

Images from www.open3d.org

Physics from Vision

- Objectives:
 - Online estimation of Degrees of Freedom (DoF)
 - Online estimation of Center of Mass (CoM)
 - Estimation of surface material properties
- Evaluation:
 - Correctness of estimation of chained DoF from demonstration
 - Accuracy of estimation of CoM and improvement with repeated demonstrations
 - Accuracy of estimation of material category

RESEARCHTIMELINE	Nov 201	L8 Dec 2	2018	Jan 2019	Feb 2	2019	Mar 2019	Apr 2019	May 2019	Jun 2019	Jul 2019
World Representation											
Physics from Vision											
Task-oriented grasping											
Whole system evaluation											

eedom (DoF) ss (CoM) perties

- DoF extracted from invariants of relative movement matrices
- Static physical quantities estimated with priors, including CoM
- Physical quantities relations encoded in a Bayesian network
- CoM estimation improved by posterior update after observing physical events

Physical Inference

- DoF extracted from invariants of relative movement matrices
- Static physical quantities estimated with priors, including CoM
- Physical quantities relations encoded in a Bayesian network
- CoM estimation improved by posterior update after observing physical events

Physical Inference

Task-oriented Grasp

- Objectives:
 - Define **limited** and **expressive** set of elementary physical tasks
 - Dexterity grasp
 - Lever grasp
 - Semantic grasp
 - Define strategy to plan grasps according to defined tasks
 - Bias grasp planning distribution according to task
- Evaluation:
 - Task correctness and robustness of execution of grasps
 - Test on simulation, validation on real robotic arm

RESEARCHTIMELINE	Nov 2018	Dec 2018	Jan 2019	Feb 2019	Mar 2019	Apr 2019	May 2019	Jun 2019	Jul 2019
World Representation									
Physics from Vision									
Task-oriented grasping									
Whole system evaluation									

Task-oriented Grasp

- Finite set of parametric grasp tasks:
 - dexterity grasp
 - lever grasp
 - semantic grasp
- Bias grasp planning distribution according to task

Future Works

• Logic task planning: chain tasks to achieve a high level objective

• Active perception: plan physical interactions to explore the environment

Antunes et al. From Human Instructions to Robot Actions: Formulation of Goals, Affordances and Probabilistic Planning, ICRA (2016)

Kim et al. Eye-in-hand stereo visual servoing of an assistive robot arm in unstructured environments, ICRA (2009)

