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1. Introduction to the problem

Reinforcement learning (RL) is the area of machine learning that studies sequential decision-making problems,
in which an agent acts in an environment with the aim of maximizing a cumulative reward. Training an agent
to learn a policy to choose actions optimally in every state of the environment is often quite expensive, slow or
dangerous. Furthermore, many RL approaches struggle to transfer knowledge across similar environments or
tasks. The application to RL of generative modeling, the area of machine learning that addresses the problem of
estimating the generating distribution for a given set of data, has shown to be able to improve both the efficiency
of learning, drastically reducing the need for difficult interactions with the environment, and the generalization of
policies among related tasks.

A learning agent can leverage generative models in various ways, but often they are used in estimating
environmental dynamics, either by modeling the distribution of entire state-action trajectories or single-step state
transitions. This class of approaches goes under the name of model-based reinforcement learning. Model-based RL
is a powerful paradigm: if an agent is able to predict the effect that actions will have on the environment, it can
use this knowledge to plan or learn faster when presented with new problems.

In several scenarios, it is possible to collect interactions either from more than one agent acting in the
environment according to its own policy, or from multiple related Markov Decision Processes (MDPs), which
formalize reinforcement learning problems [13]. In both cases, a model-based agent could take advantage of these
different experiences and use the additional information they provide about the environment during its learning
process, approximating its dynamics. In fact, with this amount of information available, training a generative
model for the sole estimation of trajectories generated by a single target policy would be a waste of precious
information; nonetheless, a generative model that is trained to approximate the environmental dynamics for all
available policies at the same time struggles to learn the complex, inherently multimodal distribution that fits all
the differences in policies. Similarly, a single, monolithic model would be not able to estimate plausible trajectories
for a whole family of related MDPs, but still knowledge of the dynamics of different MDPs can be exploited for
better modeling in a related setting, with the ultimate goal of improving the performance of an agent.

An example scenario is that of autonomous driving, where an agent is asked to drive a vehicle, receiving input
signals from its sensors and controlling its actuators. It is easy to imagine that there could be multiple and
diverse sources of driving experience, such as different drivers, different vehicles, different driving conditions.
Moreover, you could use simulations to obtain transitions that are not very likely in the real world (e.g., car
crashes). A learning agent that uses a generative model for estimating the environment dynamics would waste all
this experience if it only learns from its own interactions. Being data collection for autonomous driving expensive
and time-consuming, a dynamic model able to understand how to reuse the trajectories generated by other policies
or in other conditions to estimate the ones of a target policy or condition would be extremely beneficial.

Other application settings that feature great variability are related to the medical domain, in which RL methods
can be used to help in controlling medical equipment. There can be significant variation of conditions among
different patients or even for the same individual, due either to patient’s state or practical issues. For instance, in
functional electrical stimulation (FES) [9], a medical technology used for rehabilitation of individuals and to address
problematic neuromuscular conditions, there is uncertainty about patients and equipment at the start of each
session. Nonetheless, an agent must be able to learn the optimal behavior quickly, given a very short duration for
the session itself, and flexible generative models can offer an effective performance boost.
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2. Main related works

Model-based RL has been studied for many years to make reinforcement learning more efficient and more adaptable
[15, 11, 17]. Recent work employed generative models to estimate the distribution of entire state-space trajectories,
in place of state-to-state transitions. In [10], a generative model [14] is conditioned on past states and actions as
well as on planned future actions and used to sample likely future trajectories. The method is evaluated in two
control settings: trajectory optimization, maximizing rewards obtained over the predicted trajectories, and policy
optimization, in which a trajectory-based policy is learned. [4] exploits variational inference [8] to deal with sparse
rewards from the environment. State trajectories are embedded and the learned model is employed for performing
hierarchical reinforcement learning: a lower level policy is constrained to be consistent with a predictive model for
trajectories, and it is steered by a model predictive controller acting at the trajectory latent-space level. Both [10] and
[4] obtained promising results, suggesting that modeling of entire trajectories can be effective. However, none of
them exploited it for any kind of transfer.

In the context of imitation learning, [3] and [16] employed generative adversarial networks [6] for imitating
diverse expert policies, learning meaningful latent representations for experts’ trajectories. Nonetheless, the results
obtained are limited to imitation and not easily transferable to the model-based reinforcement learning setting.

In [7], the problem of learning a dynamic model based on uncertainty estimates, conditioned on a latent
representation of the MDP, is addressed. This model is then employed in the learning procedure of an agent
tested for transfer across multiple tasks. The work does not consider trajectories, but only single-step environment
transitions. Moreover, the different settings of the MDPs are only implicitly modeled, using latent variables for
representing a given setting, without taking into account the case in which some of the parameters of the MDP are
known in advance. For instance, in the FES setting, you can infer important information about the dynamics in
which the policy will act from features such as patient age, sex or pathology.

3. Research plan

The goal of the research is to investigate the use for model-based reinforcement learning of generative models that
can effectively leverage, to improve a target policy in a target MDP, trajectories generated by different policies or
in different MDPs. The research will have a theoretical aspect, covering the mathematical formulation and the
theoretical analysis, and an experimental aspect, including the development of algorithms and their empirical
evaluation. The data on which this evaluation will be done may be real data about autonomous driving and
FES, as well as experience collected in standard simulation environments for the approach to be compared with
similar methods. Although the theoretical part will be the first one to be addressed, iterations between theory and
experiments will be performed.

We divide the research plan into two distinct phases, to be carried out sequentially for an approximate period
of, respectively, six and five months starting from November 2018.

In the first phase, we will consider the problem of understanding generative models that approximate trajectory
distributions under different policies in a given MDP and how to properly leverage them for model-based RL.
These generative models should be flexible, understanding during their training process how much they have
to learn from each one of the similar settings. We will start with a theoretical analysis concerning the limits of
generative modeling in using this variety of source policies, with particular attention to sample efficiency. Then,
we will turn to the development of an algorithm for dynamically weighting different trajectories during the
learning procedure of a generative model, integrating it with model-based reinforcement learning. Afterwards,
an implementation will be used to perform experiments that aim to validate the theoretical insights collected in
the first months and to possibly obtain new insights to guide a further theoretical analysis. The algorithm will
be compared against similar approaches on real data or standard benchmarks, using implementations provided
by authors or custom implementations when the former are not available. After an analysis of the results, a first
milestone will be reached, with the writing of a document synthesizing the results that have been achieved and its
possible submission to an appropriate conference, for instance Neural Information Processing Systems (NIPS), whose
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submission deadline is usually in May.
In the second phase, we will look into the use of generative models for approximating environment dynamics

at the trajectory level across families of related MDPs, again in order to improve the efficiency and transfer
capabilities of an agent. The research schedule for this phase is similar to that of the first one: after a theoretical
analysis of the mathematical properties of the problem, an algorithmic approach will be devised, implemented
and empirically verified. As in the first phase, the empirical evaluation will be performed in comparison to other
methods on standard simulation benchmarks and on real data. For the implementations included in both the
phases of the research, we plan to use the Python programming language and its vast ecosystem of machine
learning software libraries, such as Pytorch [12] or Tensorflow [1] for implementing parameterized models and their
training procedures, Gym [2] and Baselines [5] from OpenAI to simulate environments and evaluate baselines in a
reliable way. Naturally, results and insights obtained in the first phase of the research plan will be used to ease
the whole process during the second phase. In the end, the second milestone will be reached, consisting in the
completion of the master thesis, together with a paper to be submitted to a relevant conference with a compatible
submission deadline, such as the AAAI Conference on Artificial Intelligence (AAAI) or the International Conference on
Learning Representations (ICLR). A tentative schedule for the various tasks that compose the research plan is shown
in Figure 1.
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Figure 1: Gantt chart picturing the research plan, starting from November 2018 to September 2019. The plan is
divided into two phases, corresponding to the two related research problems on the application of generative
models for model-based reinforcement learning. The first one considers the presence of multiple policies, while
the second one considers the existence of multiple MDPs. Each phase will consist of both a theoretical part,
including mathematical formalization and derivation of relevant properties or bounds, and an experimental part.
The milestones, namely the completion of scientific papers presenting the results of the research, are represented
in the diagram by means of red marks.
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