Research Project Proposal: Transfer of generative models in reinforcement learning

Pierluca D'Oro pierluca.doro@mail.polimi.it CSE track

Outline

- Motivation
- State of the art
 - Generative models
 - Model-based RL
- Research idea and plan

• Motivation

- State of the art
 - Generative models
 - Model-based RL
- Research idea and plan

Reinforcement Learning

An **agent** acts to maximize a **reward** collected in an **environment**.

The RL problem is modeled as a Markov Decision Process:

- States
- Actions
- Initial state distribution
- Reward function
- Discount factor
- *Transition distribution* (i.e., environmental dynamics)

We want the agent to learn the **optimal policy**, possibly estimating the **value** of a state.

Superhuman Machines?

David et al. Mastering the game of Go without human knowledge

Mnih et al. Playing atari with deep reinforcement learning

Data collection is hard

For many tasks, collecting experience can be:

- Slow
- Expensive
- Dangerous

In the real world, you cannot speedup time, you have to pay to execute actions or set up a system, and you can break things.

Examples: autonomous driving, robotics, healthcare applications.

Goal of the project

Address data shortage through:

- Sample efficiency
- Transfer from related settings

We plan to leverage:

- Experience generated by **multiple policies**
- Experience generated in **multiple environments**

We want to use it to train a policy for acting in previously unseen scenarios.

Model-based RL

RL approaches can be divided into:

- Model-free
- Model-based

In model-based RL, the agent uses an approximation of the dynamics of the environment, usually called *model*.

Pros and cons of model-based RL:

- ✓ Sample efficiency
- Easier transfer
- X Bias introduced by the model class

How can we approximate the probability distribution of future states?

- Motivation
- State of the art
 - Generative models
 - Model-based RL
- Research idea and plan

Generative Models

They model the distribution that underlies the generation of some data, performing **density estimation**.

Two families of generative models:

- **Explicit** density estimators
 - Modeling the probability density function $p(\mathbf{x})$ of the generating distribution
 - Use simplifying assumptions to maximize data likelihood
 - Examples: autoregressive models, VAE, flow methods
- **Implicit** density estimators
 - Able to draw samples from the approximated distribution
 - Examples: generative adversarial networks

Variational Autoencoders

Hourglass-shaped model by *Kingma and Welling (2013)*:

- An **encoder** q(z|x) maps the input data into latent variables
- A **decoder** p(x|z) converts latent variables into data
- Training for reconstruction of encoded data
- q(z|x) constrained to be as close as possible to a prior distribution p(z)
- Samples generated by sampling from the prior p(z) and feeding to p(x|z)

A lower bound is maximized in place of the intractable likelihood:

$$\mathbb{E}_{z\sim q(z|x)}[\log(p(x|z))] - D_{KL}(q(z|x)||p(z)) \leq \log(p(\mathbf{x}))$$

Variational Autoencoders

Variational Autoencoders

Generative Adversarial Networks

Generation is framed as a game:

- A **generator** produces fake samples mimicking a dataset
- A **discriminator** has to distinguish between real and fake samples
- Joint training
- Real and fake samples provided alternately to the discriminator

Original formulation from *Goodfellow et al (2014)*:

$$\min_{G} \max_{D} \mathbb{E}_{x \sim P_{\mathsf{data}}} \left[\log(D(x))
ight] + \mathbb{E}_{z \sim P(z)} \left[\log(1 - D(G(z))
ight]$$

Generative Adversarial Networks

Generative Adversarial Networks

How well do they generate?

Wang et al. Video-to-Video Synthesis

Karras et al. **Progressive Growing of** GANs for Improved Quality, Stability, and Variation

Brock et al. Large Scale GAN Training for High Fidelity Natural Image Synthesis 14/22

- Motivation
- State of the art
 - Generative models
 - Model-based RL
- Research idea and plan

Modeling single-step transitions

Most of the approaches have modeled the **single-step** transition distribution. Example applications: planning, learning in an "imagined" world, transfer.

Finn and Levine. **Deep** visual foresight for planning robot motion

Ha and Schmidhuber. Recurrent World Models Facilitate Policy Evolution

Racanière et al.

Imagination-augmented agents for deep reinforcement learning

Drawback of single-step modeling

Unrolling single-step future estimates for several timesteps compounds errors.

The reason? *Uncertainty*.

- Error in model estimate
- Environment stochasticity

Modeling trajectories

Mishra et al. Prediction and Control with Temporal Segment models

Main drawback: longer trajectories = fewer samples to train our model on!

- Motivation
- State of the art
 - Generative models
 - Model-based RL
- Research idea and plan

Data is precious

What if the experience is generated by **multiple agents** acting in a single environment?

What if the experience is generated acting in **multiple related environments**?

If we want to learn a model to be used by a target policy in a target environment:

- We should not waste data we have at our disposal
- We should consider differences among agent policies and environments

Why it is relevant

Autonomous Driving

Functional Electrical Stimulation

A baseline: the monolithic approach

Consider multiple policies in a fixed environment. We want to learn the **approximate dynamics** of the environment to be used just by the policy that generated the **red** trajectories.

Using all trajectories:

- No waste of data
- C Difficult fit (model has limited capacity)

Only using trajectories generated by target policy: Easier fit

X Waste of data

A baseline: the monolithic approach

s2 **s**1

Consider multiple policies in a fixed environment. We want to learn the **approximate dynamics** of the environment to be used just by the policy that generated the **red** trajectories.

Using all trajectories:

No waste of data

Difficult fit (model has limited capacity)

Only using trajectories generated by target policy:
✓ Easier fit
X Waste of data

20/22

Idea: adaptable generative models

Generative models of the dynamics could be adaptable and learn in a clever way from trajectories experienced

- by multiple policies in a single environment,
- in multiple, related, environments.

Desiderata:

- Proper weighting of transitions while learning environmental dynamics
- Faster training or zero-shot transfer for target policies and environments
- Nice theoretical properties (e.g., good efficiency bounds)

Research Plan

Thank you for your attention!