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1. Introduction to the research topic

Machine learning (ML) is the computational field that leverages statistical techniques to develop algorithms able to
learn from data. Reinforcement learning (RL) [59] is a subfield of ML that deals with the problem of training an
agent to maximize a reward signal while acting in an environment. The study of generative models is another ML
subarea, with the aim of describing in probabilistic terms the process that generated the data. Despite several
families of algorithms can be applied to RL and generative modeling, in recent years deep learning approaches
have demonstrated great capabilities for some problems: they aim at learning distributed, highly compositional
representations of data through end-to-end gradient-based optimization.

Relevant conferences for this research topic, according to experts’ opinion and rankings, are AAAI and IJCAI, in
the broader field of artificial intelligence, NIPS and ICML, specifically for machine learning, and ICLR, specialized
in deep learning; relevant journals are instead the Journal of Machine Learning Research (Microtome), Transactions on
Pattern Analysis and Machine Intelligence (IEEE), Machine Learning (Springer), Transactions on Neural Networks and
Learning Systems (IEEE).

1.1. Preliminaries

Reinforcement Learning

Reinforcement learning is the study of sequential decision-making problems in which an agent acts in an
environment with the aim of maximizing a cumulative reward. The problem can be formalized as a Markov
decision process (MDP) [50], which, in the broader case of a stochastic environment, is defined by a state space S , an
action space A, an initial state distribution p0(s0), a state transition distribution T (st|st−1, at−1), a reward function
r : S× A→ R, a discount factor γ ∈ [0, 1]. A trajectory is a sequence τt0 :T = st0 , at0 , rt0 , ..., sT , aT , rT resulting
from the agent iterating through the process of observing a state, performing an action, and receiving a reward.
Trajectories occur according to a probability distribution p(τ). In an MDP, the Markov property holds: transitions to
a state depend only on the previous state and action, or, more formally, T (st|st−1, at−1) = T (st|s0, a0, ..., st−1, at−1)
for any trajectory. The agent decides how to act according to a policy, a probability distribution π(at|st) over the
actions. In the case of environments that are not fully observable, the agent has only access to an observations ot
of the actual state, and it will act according to a policy π(at|ot). In RL, we usually want to estimate the optimal
policy π∗ by maximizing the cumulative expected discounted reward r(τt0 :T) = E[∑T

t=t0
γt−t0 r(st, at)] the agent

obtains during its sequential interactions with the environment. A low value of γ penalizes rewards that are later
in time.

Generative models

Generative models are used to perform density estimation of the probability distribution p(x) from which some data
are drawn. An estimate p̂(x) can be obtained either explicitly, by defining a parameterized p̂(x; θ), or implicitly,
usually being able to sample from p̂(x). A common approach is to maximize the log-likelihood of the data, or,
equivalently, to minimize DKL(p(x)|| p̂(x)), the Kullback–Leibler divergence between the real and the estimated
distribution. Nonetheless, this log-likelihood is not tractable and simplifying assumptions are needed.

There are three main categories of likelihood-based methods that explicitly learn p̂(x). Autoregressive approaches
use fully observed models, without any latent variables to explain the hidden factors of the data. They try to make
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the problem tractable using a factorization p̂(x) = ∏T
t=0 p(xt|x0, ..., xt−1), corresponding to the generation, for

a sample, of a single feature at a time [26, 62, 61]. Flow methods leverage invertible transformations on random
variables [16, 17, 37]. Variational methods [38, 52] try to learn an approximate density by maximizing a computable
L(x; θ) subject to the evidence lower bound L(x; θ) ≤ log p̂(x; θ); a common approach is to train a variational
autoencoder (VAE), using −L(x; θ) as a loss function. A VAE is composed of an encoder that maps the input data
into a latent representation and a decoder, able both to reconstruct the encoded data and to generate new samples,
decoding points sampled from the prior distribution of the latent variables.

Generative adversarial networks (GANs) are implicit density models that provide a way to sample from p̂(x): in
GAN training, we look for a Nash equilibrium in the game between a generator G, producing samples resembling the
real ones, and a discriminator D, which distinguishes the samples drawn from the dataset from the ones produced
by G. Several value functions were devised for this game, each of which leads to an equivalent minimization of a
divergence between p(x) and p̂(x) (e.g., Jensen-Shannon [25], Wasserstein [3], Pearson χ2 [41]). Refer to [24] for a
more precise taxonomy of recent generative models.

Tools

Current research on machine learning often takes the form of open source software projects. Python, a general-
purpose interpreted programming language, is currently the most used in the field. Several libraries were
developed for its scientific use, many of which are based on the scientific Python (SciPy) ecosystem. Moreover,
in the field of deep learning, large-scale software libraries for creating and training models on GPUs exist. These
usually feature automatic differentiation and other utilities for gradient-based optimization, and offer the possibility
to compose and use parameterized functional modules into complex structures at runtime: this concept is
sometimes referred to as differentiable programming. Two popular projects, started by industry research groups, are
Pytorch [48] and Tensorflow [1]. In reinforcement learning, tools such as the Arcade Learning Environment [7], OpenAI
gym [9], DeepMind Lab [6] and rllab [18] provide a common interface and simulation environment for learning
agents.

1.2. Research topic

The key ingredient of any reinforcement learning algorithm is the experience collected by the agent. Recent
reinforcement learning techniques have been able to achieve superhuman results [43, 55] for problems in which,
despite the extreme difficulty of the task, data collection occurs easily through the use of simulation. Nonetheless,
in almost all real world scenarios, the interaction between agent and environment, required to collect experience
for learning, entails high costs. Namely, if we compare this interaction with the one an agent can have in a
simulated environment, it is usually significantly slower, more expensive, and more dangerous. For instance, if you
want to instruct an agent to perform autonomous driving, you may think to train it in the real world. However,
this needs huge amounts of on-the-road hours, fees and expenses, together with particular attention to avoid
accidents.

Generative models can help reinforcement learning methods to face this issue in multiple ways. They are often
used to approximate the dynamics of the environment: this fast, cheap and safe estimate can be then used by an
RL algorithm to limit the interaction required with the actual environment. The reinforcement learning methods
of this kind are called model-based, as opposed to model-free approaches that do not use any explicit approximation
of environment dynamics. Other ways to leverage generative modeling in addressing the problems mentioned
above are related to the reuse of already-acquired knowledge, once again to reduce the number of interactions
with the environment. In fact, it is desirable that an agent is able either to share knowledge across tasks, known as
transfer, or to be resilient to shifts in state distribution, known as domain adaptation. Estimating the generating
distribution of the data can be the foundation for methods that favor both these capabilities.
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2. Main related works

2.1. Classification of the main related works

Model-based RL is an established field with recognized roots [58, 44, 67]. Many RL approaches use a generative
model to learn an estimate of the transition distribution T (st|st−1, at−1). Some of them try to overcome the model
bias, due to the imperfect estimation of the dynamics, considering uncertainty with techniques based on Gaussian
processes [15] or Bayesian neural networks [23, 36]. Other work has leveraged the progress in recurrent neural
networks [33] to relax the Markov assumption and take longer sequences into account in generating subsequent
states. In some cases [19, 47], the generative modeling of the environment has been directly done in sensory
space (e.g., the pixel space for visual tasks), while in others, more efficiently, the latent representations of the raw
observations have been considered [13, 10, 63, 66].

The representation of observations is often obtained by means of convolution-based variational autoencoders
[29, 20]. In addition, variational methods have also been used to facilitate the transfer across tasks [31] and goals
[46]. Recently, they have been employed in estimating p(τ), the probability distribution of whole trajectories [42, 14],
since unrolling the one-step models of the dynamics autoregressively several times generates poor predictions,
practically inhibiting long-horizon planning. Nonetheless, this approach has not yet been fully explored and
deserves more attention. Some methods combine model-based and model-free approaches, with the objective of
making the latter more data efficient and adaptable. Although it has been a well-known integration for a long
time [58], it can fully exploit the representation capabilities of modern deep learning models [51, 27, 45]. Other
approaches have used predictive models of the environment to encourage exploration [53, 60, 49, 57, 11, 2, 54].

Generative adversarial networks have shown potential in RL for tree-based planning [4], adapting observations
across domains [8], generating goals [21] or trajectories to reach them [39], efficiently learning from demonstrations
[32, 65, 40, 5, 22]. However, recent advances in generative modeling using GANs [35, 69, 64, 68], mainly achieved
within the computer vision community, have enormous potential left for application in reinforcement learning.

Recent mentioned works on the use of generative models for reinforcement learning are shown in Table 1.

2.2. Brief description of the main related works

Many recent works analyzed how to properly design and leverage different forms of recurrent environment models
for the benefit of learning agents. Preliminary results in [47] showed that it is possible to directly condition a
one-step video prediction model using actions, obtaining an estimate of the behavior of a visual environment.
The video prediction model is a deep encoder-decoder network that uses convolutional and recurrent layers for
modeling visual and temporal aspects respectively. This approach is improved in [13], where a latent encoding is
predicted in place of the whole high-dimensional state and alternative training schemes are considered to achieve
better autoregressive unrolling. In [10], environment simulators capable of stochastic estimates are evaluated for
the same problem considering also the possibility for an agent to actively query the predictor.

Several RL approaches jointly learn a representation of observations from the environment and policies (for
policy search approaches) or value functions (for value-based approaches). The obtained representation is extremely
unhandy for knowledge transfer: on the one hand, it prevents reusing the same policy if the distribution of the
observations changes; on the other hand, it prevents reusing the same state representation if the task changes.
To address this problem, it is beneficial to learn a latent embedding of observations and a policy separately.
[29] proposes a modular method composed of a VAE-based vision module, a predictive MDN-RNN [28] model
and a decision-making component. The three modules are learned one after the other and the simple linear
controller takes into account both the current observation representation and the history encoded by the model
of the environment. The approach also exploits the learned Doom video game’s dynamics to train a policy in
the hallucinated environment it obtains by unrolling the generative model and employing it in the actual game.
In [31], a β-VAE [30] is used for learning a disentangled representation of images, whose peculiar features are
therefore represented independently. This allows a policy trained on a source task to be capable of zero-shot
domain adaptation, acting directly on a target task without further retraining. The method proposed in [46]
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for goal-oriented reinforcement learning exploits a VAE as well, for multiple purposes: first, to obtain a latent
representation to be used for learning a policy and a value function in a model-free setting; secondly, to obtain the
goal-dependent reward, defined as r(s, g) = −||e(s)− e(g)||2, the opposite of the Euclidean distance between the
representations computed by the VAE encoding function e of a generic state s and a goal state g; third, to generate
new goals for learning by sampling from the VAE prior.

The capabilities of generative models have been extensively leveraged for planning. [63] and [19] use two
different video prediction models to estimate the visual dynamics of the environment and determine the best
action to be taken according to model predictive control (MPC), an optimal control technique that plans in a finite
horizon but recompute the action to take after each time step. An MPC is also used in [66], which exploits a VAE
to linearize the local dynamics of image trajectories. In [51], Monte Carlo rollouts of environment simulators are
interpreted by the agent to determine its policy, in a model-based/model-free hybrid. GANs have been used for
planning as well: in [39] a type of generative adversarial networks named InfoGAN [12] is used to obtain a state
representation, subsequently used to plan; in [4], a common GAN-based method for image-to-image translation
[34] is employed to estimate state transitions and, together with a reward estimator, to use Monte Carlo tree search
for playing Atari games.

Generative adversarial networks have been also employed in imitation learning, the task of learning policies from
expert demonstrations. The problem is commonly framed as in [32], considering the generator as the policy to be
learned and training the discriminator to distinguish between expert and generated actions. Many approaches
have built upon [32], for instance by improving performance on multimodal trajectory distributions [65] or by
including differentiation through estimated environment dynamics [5].

Recently, some approaches have tried to model the multi-step dynamics of the environment with a single
generative step, using an approximation p̂(τ) of the trajectory distribution. In [42], a conditional VAE [56], based
on dilated causal convolution [61], is conditioned on past states and actions as well as on planned future actions
and trained on temporal segments to be able to sample likely future trajectories. The method is then improved
with the use of an additional latent action prior obtained by means of another VAE to ensure that future actions
can only be sampled according to a feasible distribution given past actions. The evaluation is done on control
in two settings: trajectory optimization, maximizing rewards obtained over the predicted trajectories, and policy
optimization, in which a policy acting on temporal segments is learned. [14] exploits variational inference to embed
state trajectories, employing the learned model for performing hierarchical reinforcement learning. A lower level
policy, which acts as an additional decoder for the VAE, is constrained to be consistent with the actual state decoder,
and it is steered by a model predictive controller acting at the trajectory latent-space level.

2.3. Discussion

Transferring skills among compatible tasks and similar environments is a crucial problem in reinforcement learning.
Although it has been studied for several years, it is still far from being solved. Humans are able to learn how to
perform a task and easily acquire the ability to perform similar tasks; they can quickly understand when and how
to use previously learned skills to solve a new problem. All agents trained by nowadays algorithms are instead
intelligent in a much narrower sense. Being able to effectively reuse knowledge is a fundamental ingredient for
widening their intelligence.

Model-based reinforcement learning, obtained through the use of generative models, is a promising route to
improve RL algorithms. Although the real world is complex and difficult to model, even just the use of a good
estimate of its dynamics can rule out all the behaviors of an agent that are not consistent with it. In this way, both
the transferability and the sample-efficiency can be improved. Moreover, progress in model-based RL can yield
fruitful combinations of machine learning, optimal control and classical artificial intelligence techniques.

An open issue in the use of generative models for reinforcement learning concerns the kind of distribution
these models are called to approximate. The vast majority of existing approaches estimated single transitions
sampled from T̂ (st|st−1, at−1). However, unrolling this kind of predictive models for a large number of time steps
leads to progressively more inaccurate estimates, due to both compounding estimation errors and environment
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uncertainty. Therefore, modeling p(τ) for whole trajectories can be an effective strategy. However, it has not yet
been explored enough, nor integrated with previously proposed one-step methods.

Generative Models for Reinforcement Learning

Paper LfD Plan. Tran. Goal Eff. Expl. p̂(τ) T̂ VAE GAN F.O.

Deisenroth and Rasmussen [2011] 3 3 3

Wahlström et al. [2015] 3 3 3 3

Stadie et al. [2015] 3 3 3

Watter et al. [2015] 3 3 3 3

Gal et al. [2016] 3 3 3

Gu et al. [2016] 3 3 3 3 3

Finn et al. [2016] 3 3 3

Ho and Ermon [2016] 3 3

Agrawal et al. [2016] 3 3 3 3 3

Wang et al. [2017] 3 3 3

Baram et al. [2017] 3 3 3

Finn and Levine [2017] 3 3 3 3

Li et al. [2017] 3 3 3

Mishra et al. [2017] 3 3 3 3

Racanière et al. [2017] 3 3 3 3 3

Killian et al. [2017] 3 3 3

Higgins et al. [2017b] 3 3

Florensa et al. [2017] 3 3

Pathak et al. [2017] 3 3 3

Buesing et al. [2018] 3 3 3

Shyam et al. [2018] 3 3 3 3

Nair et al. [2018] 3 3

Ha and Schmidhuber [2018] 3 3 3 3

Co-Reyes et al. [2018] 3 3 3 3 3

Kurutach et al. [2018] 3 3 3 3

Nagabandi et al. [2018] 3 3 3 3

Bousmalis et al. [2018] 3 3 3

Fu et al. [2018] 3 3 3

Table 1: Summary of recent works mentioned in this document on the application of generative models in
reinforcement learning. The features used to describe them are, from left to right in the table header: the application
for learning from demonstrations (LfD), planning, transfer, goal-based RL, sample efficiency, exploration; whether
they model the trajectory distribution p(τ) or single-step transitions drawn from T ; the type of generative model
that is employed, among VAE, GAN and fully observed (F.O.).
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