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Solving Sequential Decision Making Problems

Sequential decision making is a
core capability of intelligent
agents.

Reinforcement Learning (RL)
studies how an agent can learn to
interact with an environment,
guided by a reinforcement signal
he wants to maximize.

No knowledge of the environment
dynamics is assumed.

Agent

Environment

Observation,	
Reward

Action
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Markov Decision Processes

A Markov Decision Process (MDP) [Puterman, 2014] is described by
a tuple M = (S,A, r , p, µ, γ), where:

• S is the space of possible states

• A is the space of possible actions

• r : S ×A → R is the reward function

• p : S ×A× S → R is the transition model

• µ : S → R is the distribution of the initial state

• γ ∈ [0, 1) is a discount factor

We assume r is known and uniformly bounded by
|r(s, a)| ≤ Rmax < +∞. The behavior of an agent is described by a
policy π : S ×A → R.

Overview Model-based Reinforcement Learning
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Value Functions and the RL objective

Given a state-action pair (s, a) we define the action-value
function [Sutton and Barto, 2018], or Q-function, by using the
dynamic-programming-based Bellman equation:

Qπ,p(s, a) = r(s, a) + γ

∫
S

p(s′|s, a)
∫
A
π(a′|s′)Qπ,p(s′, a′)ds′da′

and the state-value function, or V-function, as:

V π,p(s) = E
a∼π(·|s)

[Qπ,p(s, a)].

The goal of the agent is to find an optimal policy π∗, maximizing the
expected return:

Jπ,p = Es0∼µ [V π,p(s0)] , π∗ = argmax
π

Jπ,p
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Successes in Model-free RL

Most RL approaches do not explicitly learn about the transition
model p.

Biggest successes in model-free RL in the last years were in games.
For instance, super-human performance was reached in:

• ATARI games [Mnih et al., 2015]

• Go [Silver et al., 2016, Silver et al., 2017]

• Starcraft [Vinyals et al., 2019]

Shared traits: very efficient simulator available, no safety, transfer or
data efficiency concerns.

In others words, not easy to adapt these methods to the real world.

Overview Model-based Reinforcement Learning
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Reinforcement Learning

Model-based Reinforcement Learning
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The model-based loop

Model-based Reinforcement
Learning (MBRL) uses estimated
models of the dynamics of the
environment to learn a policy.
Synonyms: world model, forward
model, (just) model.

The policy is obtained by planning
with the learned model.

Value/Policy

Experience

Model Acting

Learning

Planning
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Motivation

The main advantages of MBRL can be summarized as:

• Sample-efficiency

• Easier transfer

• More effective exploration

• Safety
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The three key questions in MBRL

• Which model class to use?

• How to learn the model?

• How to use the learned model?
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How to learn the model?

Different choices can be made on the loss function (e.g., depending on
the type of generative model).

On a higher level, two approaches can be taken for model learning:

• Task-agnostic - Maximum Likelihood. Assume no prior
knowledge. Commonly used (e.g., by MSE minimization on
observed transitions).

• Decision-aware. Leverage knowledge about task, policy or
learning algorithm to decide which one of the observed
transitions are more important. E.g. Minimize error on Bellman
operator in value-based methods [Farahmand et al., 2017]:

c (p̂, p;Q) (s, a) =
∣∣∣∣∫ [p (s′|s, a)− p̂ (s′|s, a)]max

a′
Q(s′, a′)ds′

∣∣∣∣
RESEARCH GOAL: learn the model of the dynamics that is optimal
for improving a policy by using its gradient.
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A gradient ascent approach to policy search

Policy Gradient methods are among the most popular policy-based
RL methods:

• We consider πθ ∈ ΠΘ, with ΠΘ a parametric space of stochastic
and differentiable policies

• The performance on the task J is therefore a function of θ

• We can differentiate it w.r.t. the parameters of πθ

• Then, policy can be improved with an update of the kind:

θk+1 = θk + α∇θJ (θ),

where α is a small step-size (a.k.a. learning rate)
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Policy Gradients
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Model-Free Gradient

Let p be the transition model of an MDP, ΠΘ a parametric space of
stochastic and differentiable policies, π ∈ ΠΘ.

Definition (Model-Free Gradient)

∇MFG
θ J (θ) = 1

1− γ

∫
S

∫
A
δπ,pµ (s, a)∇θ log π(a|s)Qπ,p(s, a)dsda.

This is just a renaming of the formulation provided by the Policy
Gradient Theorem [Sutton et al., 2000]. Three elements into play:

• δπ,pµ (s, a), the density function of the state-action distribution

• ∇θ log π(a|s), the score, linked to the chance of improvement

• Qπ,p(s, a), the value of the state-action couple

Unbiased estimators are available.

Overview A taxonomy of Policy Gradients
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Fully Model-based Gradient

Let ΠΘ a parametric space of stochastic policies, P a class of
transition models, π ∈ ΠΘ and p̂ ∈ P.

Definition (Fully Model-based Gradient)

∇FMG
θ J (θ) = 1

1− γ

∫
S

∫
A
δπ,p̂µ (s, a)∇θ log π(a|s)Qπ,p̂(s, a)dsda.

As the MFG, but in an imagination MDP in which the true model p
is substituted with p̂. Advantages:

• Cheap to estimate: no environment interaction required

• Flexible: any model free algorithm can be adapted, plus others

• It can reduce variance at the cost of the bias introduced by an
estimated model

Overview A taxonomy of Policy Gradients
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Model-Value-based Gradient

Let ΠΘ a parametric space of stochastic policies, P a class of
transition models, π ∈ ΠΘ and p̂ ∈ P.

Definition (Model-Value-based Gradient)

∇MVG
θ J (θ) = 1

1− γ

∫
S

∫
A
δπ,pµ (s, a)∇θ log π(a|s)Qπ,p̂(s, a)dsda.

It uses trajectories from the real environment model p, but solves
credit assignment by using the estimated model p̂. Examples:
SVG(∞) [Heess et al., 2015], MVE [Feinberg et al., 2018].
Advantages:

• Grounded Gradient: real trajectories avoid catastrophic errors

• Still model-based: many model-based advantages are retained

• A compromise in bias and variance w.r.t. MFG and FMG

Overview A taxonomy of Policy Gradients
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Gradients Recap

Let p be the transition model of an MDP, ΠΘ a parametric space of
stochastic policies, P a class of transition models, π ∈ ΠΘ and p̂ ∈ P.

Model-Free Gradient⇒ High Variance

∇MFG
θ J (θ) = 1

1− γ

∫
S

∫
A
δπ,pµ (s, a)∇θ log π(a|s)Qπ,p(s, a)dsda.

Fully Model-based Gradient⇒ High Bias

∇FMG
θ J (θ) = 1

1− γ

∫
S

∫
A
δπ,p̂µ (s, a)∇θ log π(a|s)Qπ,p̂(s, a)dsda.

Model-Value-based Gradient⇒ Compromise on bias/variance
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∇MVG
θ J (θ) = 1

1− γ

∫
S

∫
A
δπ,pµ (s, a)∇θ log π(a|s)Qπ,p̂(s, a)dsda.
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Gradient-Aware Model-based Policy
Search

Analysis of the Model-Value-based
Gradient
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An upper bound on the MVG bias

Proposition

Let q ∈ [1,+∞] and p̂ ∈ P. If ∥∇θ log π(a|s)∥q ≤ K for all s ∈ S and
a ∈ A, then, the Lq-norm of the difference between the policy gradient
∇θJ (θ) and the corresponding MVG ∇MVG

θ J (θ) can be upper
bounded as:

∥∇θJ (θ)−∇MVG
θ J (θ)∥q ≤ c1

√
Es,a∼δπ,p

µ
[DKL(p(·|s, a)∥p̂(·|s, a))].

This proposition justifies maximum likelihood model estimation for
MVG-based approaches.

The importance of the error on state-action couple (s, a) only depends
upon its visitation δπ,pµ (s, a).
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√
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µ
[DKL(p(·|s, a)∥p̂(·|s, a))]

≤ c1

√
Es,a∼δπ,p

µ
[DKL(p(·|s, a)∥p̂(·|s, a))].

The distribution under which model mismatch is measured becomes:

ηπ,pµ (s, a) = 1
Z

∫
S

∫
A
δπ,pµ (s′, a′) ∥∇θ log πθ(a′|s′)∥q δ

π,p
s′,a′(s, a)ds′da′

A decision-aware weighting factor leads to a better bound.
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Gradient-Aware Model-based Policy
Search

The Algorithm
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Overview

We distill the intuition behind the previous Proposition into a policy
search algorithm with the following features:

• Batch (no further environment interaction)

• MVG-based

• Gradient-aware

Gradient-Aware Model-based Policy Search (GAMPS) has 3 steps:

1. Learning the model

2. Computing the value function

3. Estimating the policy gradient
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Learning the model

Gradient-Aware loss function

p̂ = argmax
p∈P

1
N

N∑
i=1

Ti−1∑
t=0

ωi
t log p

(
si

t+1|si
t , ai

t
)

Gradient-Aware Weights

ωi
t = γtρπ/πb(τ

i
0:t)

t∑
l=0

∥∥∇θ log π(ai
l |si

l )
∥∥

q

Important transitions:

• Early transitions

• Likely transitions
under π

• Transitions at the end
of trajectories with
large cumulative score
magnitude
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Computing the value function

To compute Qπ,p̂, we should carry out policy evaluation.

We propose the following Monte-Carlo approach for continuous
environments.

Evaluation via Monte-Carlo Imagination Rollouts

Q̂(s, a) = 1
M

M∑
j=1

Tj−1∑
t=0

γtr(sj
t , a

j
t), τ j ∼ ζπ,p̂s,a .

Advantages in avoiding explicit Q-function approximation:

• No regression targets

• No choice for model class
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Estimating the policy gradient

Policy Gradient estimator

∇̂θJ (θ) = 1
N

N∑
i=1

Ti−1∑
t=0

γtρπ/πb(τ
i
0:t)∇θ log π(ai

t |si
t)Q̂(si

t , ai
t).
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Putting all together

Gradient-Aware Model-based Policy Search
Input: Trajectory dataset D, behavior policy πb, initial parameters θ0

for k = 0, 1, ...,K − 1 do
ωi

t,k ← γtρπθk /πb(τ
i
0:t)

∑t
l=0 ∥∇θ log πθk (ai

l |si
l )∥q

p̂k ← argmaxp∈P
1
N
∑N

i=1
∑Ti−1

t=0 ωi
t,k log p(si

t+1|si
t , ai

t)

Generate a dataset of M trajectories for each (s, a) simulating p̂k

Q̂k(s, a) = 1
M

∑M
j=1

∑Tj−1
t=0 γtr(sj

t , a
j
t)

∇̂θJ (θk)← 1
N
∑N

i=1
∑Ti−1

t=0 γtρπθk /πb(τ
i
0:t)×

×∇θ log πθk (ai
t |si

t)Q̂k(si
t , ai

t)

θk+1 ← θk + αk∇̂θJ (θk)

end for
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Gradient-Aware Model-based Policy
Search

Theoretical Analysis
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Goal of the theoretical analysis

Learning theory analysis using tools from [Cortes et al., 2013].

Objectives:

• Highlight the important elements in approximation/estimation
errors

• Show that choosing a simple model class can be wise

• Justify the intuition behind gradient-aware MVG estimation
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Finite-sample Bound

Theorem

For any δ ∈ (0, 1), with probability at least 1− 4δ it holds thata:∥∥∥∇̂θJ (θ)−∇θJ (θ)
∥∥∥

q
≤ c2 inf

p∈P

√
E

s,a∼ηπ,p
µ

[DKL(p(·|s, a)∥p(·|s, a))]

approximation error

+ O
(√

v
N

)
estimation error

aN : num. of trajectories, v: P pseudo-dimension, d: gradient dimensionality
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Gradient-Aware Model-based Policy
Search

Experimental Analysis
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Two-areas Gridworld - Description

G μ

μ

μ

μ

μμμμμ

• Swapped action effect in two areas

• Initial states µ

• Reward of -1 everywhere but in G

• One-way wall

• Batch setting (one time data
collection)
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Two-areas Gridworld - Policy and Model class

Policy

• Boltzmann (categorical)
distribution over actions

• Deterministic in lower part,
randomly initialized in upper

Model

• Linear in the sole action
(equivalent to a lookup table)

• Able to represent only one of
the two environment parts
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Two-areas Gridworld - Difference in ML and GAMPS weights
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Two-areas Gridworld - Gradient Approximation Experiment

Table 1: Estimation performance on the gridworld environment comparing
Maximum Likelihood estimation (ML) and our approach (GAMPS). 1000
training and 1000 validation trajectories per run. Average results on 10
runs with a 95% confidence interval.

Approach p̂ accuracy Q̂ MSE ∇̂θJ cosine similarity

ML

0.765 ± 0.001 11.803 ± 0.158 0.449 ± 0.041

GAMPS

0.357 ± 0.004 633.835 ± 12.697 1.000 ± 0.000
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Two-areas Gridworld - Policy Improvement Results
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(c) 100 trajectories

Figure 1: Average return on the Two-areas gridworld with different dataset
size. ML is the same as GAMPS but using maximum likelihood model
estimation (20 runs, mean ± std).
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Minigolf (Continuous states/actions) - Policy Improvement Results
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Figure 2: Average return using a 50 trajectories dataset on the minigolf
environment (10 runs, mean ± std).
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Conclusions and Future Work
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• We analyzed the Model-Value-based Gradient

• We showed that ML is suboptimal for model learning when
computing the MVG

• We built the GAMPS algorithm based on this intuition

• We validated the theoretical analysis with experimental evidence
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Future Work

Possible extensions and related research directions:

• Online extension

• Different methods for computing Qπ,p̂

• Estimation of the reward function

• Deeper theoretical analysis

• Other gradient-aware MVGs (e.g., inspired by SVG)
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The Bitter Lesson

In Model-based RL

Maximum likelihood is an agnostic way to learn a model, but better
loss functions exist when more information is available.

More generally - The meta-learning perspective

If a system uses different internal modules, the learning algorithm of a
module can benefit from the knowledge about the learning algorithm
of another.
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The End1

Thank you for the attention!

1Paper submitted to AAAI 2020.
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