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Solving Sequential Decision Making Problems

Sequential decision making is a
core capability of intelligent
agents.

Reinforcement Learning (RL)

studies how an agent can learn to

. . . Action Observation,
interact with an environment, Reward
guided by a reinforcement signal

he wants to maximize.

No knowledge of the environment
dynamics is assumed.
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Markov Decision Processes

A Markov Decision Process (MDP) [Puterman, 2014] is described by
a tuple M = (S, A, r, p, u,y), where:

- S is the space of possible states

- A is the space of possible actions

cr: S8 x A— Ris the reward function

- p:SXxAxS — Ris the transition model

+ 1S — Ris the distribution of the initial state
- v €[0,1) is a discount factor

We assume 7 is known and uniformly bounded by
[7(s,a)] < Rmax < +00. The behavior of an agent is described by a
policy m: S x A — R.
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Value Functions and the RL o

Given a state-action pair (s, a) we define the action-value
function [Sutton and Barto, 2018], or Q-function, by using the
dynamic-programming-based Bellman equation:

Q™" (s,a) =r(s,a) + v/ p(s|s, a)/ m(ad'|s) QTP (s, a')ds'da’
S A
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function [Sutton and Barto, 2018], or Q-function, by using the
dynamic-programming-based Bellman equation:

Qﬂ,ﬁ(& a) = 7«(3, a) + ’7/ p(s'|s, a)/ 7T(G,I|SI) Qﬂ’p(s’, a,)dsldal
S A
and the state-value function, or V-function, as:

ViP(s) = E [Q7"(s,a)].

ar~r(]s)

The goal of the agent is to find an optimal policy 7*, maximizing the
expected return:

JTP = EsoNH [Vﬂ-’p(s())] s = argmax JTr
™
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Successes in Model-free RL

Most RL approaches do not explicitly learn about the transition
model p.

Biggest successes in model-free RL in the last years were in games.
For instance, super-human performance was reached in:

- ATARI games [Mnih et al., 2015]
- Go [Silver et al., 2016, Silver et al., 2017]
- Starcraft [Vinyals et al., 2019]

Shared traits: very efficient simulator available, no safety, transfer or
data efficiency concerns.

In others words, not easy to adapt these methods to the real world.
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Reinforcement Learning

Model-based Reinforcement Learning
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The model-based loop

Model-based Reinforcement /
Learning (MBRL) uses estimated Elnnin:s Value/Policy
models of the dynamics of the

environment to learn a policy.
Synonyms: world model, forward
model, (just) model.

The policy is obtained by planning
with the learned model.

Experience
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Motivation

The main advantages of MBRL can be summarized as:

- Sample-efficiency

Easier transfer

- More effective exploration

- Safety
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How to learn the model?

Different choices can be made on the loss function (e.g., depending on
the type of generative model).

On a higher level, two approaches can be taken for model learning;:
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Different choices can be made on the loss function (e.g., depending on

the type of generative model).

On a higher level, two approaches can be taken for model learning;:

+ Task-agnostic - Maximum Likelihood. Assume no prior
knowledge. Commonly used (e.g., by MSE minimization on
observed transitions).

+ Decision-aware. Leverage knowledge about task, policy or
learning algorithm to decide which one of the observed
transitions are more important. E.g. Minimize error on Bellman
operator in value-based methods [Farahmand et al., 2017

(.55 Q)(5:0) = | [ Ip(15.0) = (5], ) max Q' )

RESEARCH GOAL: learn the model of the dynamics that is optimal

for improving a policy by using its gradient. .
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A gradient ascent approach to policy search

Policy Gradient methods are among the most popular policy-based
RL methods:

+ We consider mg € Ilg, with Ilg a parametric space of stochastic
and differentiable policies

+ The performance on the task J is therefore a function of 0
- We can differentiate it w.r.t. the parameters of 7y

+ Then, policy can be improved with an update of the kind:
0" = 0% + avVeJ(0),

where « is a small step-size (a.k.a. learning rate)
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Policy Gradients

A taxonomy of Policy Gradients
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Model-Free Gradient

Let p be the transition model of an MDP, Ilg a parametric space of
stochastic and differentiable policies, 7 € Ilg.

Definition (Model-Free Gradient)

VereI(0) = 1%),/81452”’(5, a)Velogm(als) Q™ (s, a)dsda.

This is just a renaming of the formulation provided by the Policy
Gradient Theorem [Sutton et al., 2000]. Three elements into play:
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Model-Free Gradient

Let p be the transition model of an MDP, Ilg a parametric space of
stochastic and differentiable policies, 7 € Ilg.

Definition (Model-Free Gradient)

VereI(0) = 1%}//3[452”’(5, a)Velogm(als) Q™ (s, a)dsda.

This is just a renaming of the formulation provided by the Policy

Gradient Theorem [Sutton et al., 2000]. Three elements into play:
* 6]'P(s, a), the density function of the state-action distribution
- Vo logm(als), the score, linked to the chance of improvement

© Q™P(s, a), the value of the state-action couple

Unbiased estimators are available.
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Fully Model-based Gradient

Let Ilg a parametric space of stochastic policies, P a class of
transition models, 7 € Ilg and p € P.

Definition (Fully Model-based Gradient)

VEME 1 () = // 6””’ (s,a)Vglogm(als)Q™P(s, a)dsda.

As the MFG, but in an imagination MDP in which the true model p
is substituted with p. Advantages:
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Model-based Gradient

Let Ilg a parametric space of stochastic policies, P a class of
transition models, 7 € Ilg and p € P.

Definition (Fully Model-based Gradient)

VEME 1 () = // 6””’ (s,a)Vglogm(als)Q™P(s, a)dsda.

As the MFG, but in an imagination MDP in which the true model p
is substituted with p. Advantages:

+ Cheap to estimate: no environment interaction required
- Flexible: any model free algorithm can be adapted, plus others
+ It can reduce variance at the cost of the bias introduced by an

estimated model
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Model-Value-based Gradient

Let Ilg a parametric space of stochastic policies, P a class of

transition models, 7 € Ilg and p € P.

Definition (Model—Value-based Gradient)

viVG (o //6 (s, a)Vglogm(als)Q™P(s, a)dsda.

It uses trajectories from the real environment model p, but solves
credit assignment by using the estimated model p. Examples:
SVG(oo) [Heess et al., 2015], MVE [Feinberg et al., 2018].
Advantages:
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Model-Value-based Gradient

Let Ilg a parametric space of stochastic policies, P a class of

transition models, 7 € Ilg and p € P.

Definition (Model—Value-based Gradient)

viVG (o //6””’ s, )V log m(als) Q™ (s, a)dsda.

It uses trajectories from the real environment model p, but solves
credit assignment by using the estimated model p. Examples:
SVG(c0) [Heess et al., 2015], MVE [Feinberg et al., 2018].
Advantages:

- Grounded Gradient: real trajectories avoid catastrophic errors
+ Still model-based: many model-based advantages are retained
+ A compromise in bias and variance w.r.t. MFG and FMG
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Gradients Recap

Let p be the transition model of an MDP, Ilg a parametric space of
stochastic policies, P a class of transition models, 7w € Ilg and p € P.
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Gradients Recap

Let p be the transition model of an MDP, Ilg a parametric space of
stochastic policies, P a class of transition models, 7w € Ilg and p € P.

Model-Free Gradient = High Variance

VeI (0) = l%y/s/flél’j’p(s, a)Velogm(als) Q™ (s, a)dsda.

Fully Model-based Gradient = High Bias

1 = A
VEME 1 () = 1—/ / 6,7 (s,a)Veglogm(als) @™ " (s, a)dsda.
- SJA

Model-Value-based Gradient = Compromise on bias/variance

viVE j(0) = //(5””’ s, )V log m(a|s) Q™ (s, a)dsda.
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Gradient-Aware Model-based Policy

Search
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Gradient-Aware Model-based Policy

Search

Analysis of the Model-Value-based
Gradient
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An upper bound on the MVG bias

Proposition

Let g € [1,400] and p € P. If [|[Vglogm(als)||, < K for all s € S and
a € A, then, the L%norm of the difference between the policy gradient
Ve J(0) and the corresponding MVG V3IVG J(0) can be upper
bounded as:

VeI (8) = V§'VeI(0)]4 < 1 \/]Es,wsgm [Drr(p(ls, )l[P(:s, a))]-

This proposition justifies maximum likelihood model estimation for
MVG-based approaches.

The importance of the error on state-action couple (s, a) only depends
upon its visitation 677 (s, a).
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An upper bound on the MVG bias

Proposition

Let g € [1,400] and p € P. If [|[Vglogm(als)||, < K for all s € S and
a € A, then, the L9%-norm of the difference between the policy gradient
Ve J(0) and the corresponding MVG V3IVG J(0) can be upper
bounded as:

167(8) = VEVCIO)ly < e21 /B ar Drce(p(ls, DlBC1s, 0))

< e1y/Eq,ansgr [Dxr(p(ls, 0)[B(1s, a))]:

The distribution under which model mismatch is measured becomes:
1
n. P (s, a) = 7 /.S /A 5;”’(5', a')||[Velog 7rg(a'|5/)||q 5;”’;,(5, a)ds'da

A decision-aware weighting factor leads to a better bound.
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Gradient-Aware Model-based Policy
Search

The Algorithm

23/43




Overview

We distill the intuition behind the previous Proposition into a policy
search algorithm with the following features:
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Overview

We distill the intuition behind the previous Proposition into a policy
search algorithm with the following features:

- Batch (no further environment interaction)

+ MVG-based

- Gradient-aware

Gradient-Aware Model-based Policy Search (GAMPS) has 3 steps:

1. Learning the model
2. Computing the value function

3. Estimating the policy gradient
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Learning the model

Gradient-Aware loss function

N T,—1
p = argmax — E E wilogP (i 1|s}, af)
peEP i=1 t=0
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Learning the model

Gradient-Aware loss function

N T,—1
p = argmax — E g wilogP (i 1|s}, af)
peEP i=1 t=0

Important transitions:

- Early transitions

Gradient-Aware Weights

+ Likely transitions

t

. ) o d
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Learning the model

Gradient-Aware loss function

N T,—1
p = argmax — E g wilogP (i 1|s}, af)
peEP i=1 t=0

Important transitions:

- Early transitions

Gradient-Aware Weights

+ Likely transitions

t
i i 8.4 under 7
Wy = ’Ytpw/ﬂb(TO:t)Z ||V9 logﬂ'(al |5l)||q .
=0 - Transitions at the end

of trajectories with
large cumulative score
magnitude
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Computing the value function

To compute Q™?, we should carry out policy evaluation.

We propose the following Monte-Carlo approach for continuous
environments.

Evaluation via Monte-Carlo Imagination Rollouts

M T;—

Qs, ZZM G

]—1t0
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Computing the value function

To compute Q™?, we should carry out policy evaluation.

We propose the following Monte-Carlo approach for continuous
environments.

Evaluation via Monte-Carlo Imagination Rollouts

M T;—

Qs, ZZM G

jltO

Advantages in avoiding explicit Q-function approximation:

- No regression targets

- No choice for model class
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Estimating the policy gradient

Policy Gradient estimator

N T;—1
& 1 S i NN Dol 5
Ve J(0) = N E E 'Ytpfr/ﬂb(TO:t)VG 10g77(“t|5t)Q(5t’ a’t)'
=1 t=0
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Putting all together

Gradient-Aware Model-based Policy Search

Input: Trajectory dataset D, behavior policy 7y, initial parameters 6
for k=0,1,.... K —1do
) . o A
Wi g thwek/wb(fé t) 2 =0 Ve 10g7fok(ai|83)||q

pk < arg ma'xpeP N Zz_ Zt 0 wt k logﬁ(s§+1|s§, a’%)
Generate a dataset of M traJectorles for each (s, a) simulating py,
Qr(s,a) = 37 Z] 1 Et -0 vir(si, af)
VoJ(0r) < N Ei:l Zt:o Y pﬂek/m(Té:t)x
xVelogme, (ai|s;) Qr(s;, a;)
Ort1 < O + Vo J (0r)
end for
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Gradient-Aware Model-based Policy
Search

Theoretical Analysis

29/43

d Gradient The Algorithm Theoretical Analysis Experimental Ar



Goal of the theoretical analy

Learning theory analysis using tools from [Cortes et al., 2013].

Objectives:

30/43

orithm Theoretical Analysis Experimental Analysis



Goal of the theoretical analy

Learning theory analysis using tools from [Cortes et al., 2013].

Objectives:

- Highlight the important elements in approximation/estimation
errors

30/43

ient The Algorithm Theoretical Analysis Experimer



Goal of the theoretical analy

Learning theory analysis using tools from [Cortes et al., 2013].

Objectives:

- Highlight the important elements in approximation/estimation
errors

+ Show that choosing a simple model class can be wise

30/43

ient The Algorithm Theoretical Analysis Experimer



Goal of the theoretical an

Learning theory analysis using tools from [Cortes et al., 2013].

Objectives:

- Highlight the important elements in approximation/estimation
errors

+ Show that choosing a simple model class can be wise

+ Justify the intuition behind gradient-aware MVG estimation
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Finite-sample Bound

For any § € (0,1), with probability at least 1 — 44 it holds that?:

nETF ™, p
pEP s,arny,
1 1
approximation error

o

e —|
estimation error

H%J(e)—vgj(e)qu ¢ mf\/ E_ [Dxo(p(ls, a)[5(s, a))]

2N: num. of trajectories, v: P pseudo-dimension, d: gradient dimensionality
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Gradient-Aware Model-based Policy
Search

Experimental Analysis
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Two-areas Gridworld - Description

- Swapped action effect in two areas

3 - Initial states p
M
M - Reward of -1 everywhere but in G
M
- One-way wall
(TR TR TR TR

- Batch setting (one time data
collection)
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Two-areas Gridworld - Policy and Model class

Policy Model
- Boltzmann (categorical) + Linear in the sole action
distribution over actions (equivalent to a lookup table)
- Deterministic in lower part, + Able to represent only one of
randomly initialized in upper the two environment parts
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Two-areas Gridworld - Difference in ML and GAMPS weights
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Two-areas Gridworld - Gradient Approximation Experiment

Table 1: Estimation performance on the gridworld environment comparing
Maximum Likelihood estimation (ML) and our approach (GAMPS). 1000
training and 1000 validation trajectories per run. Average results on 10
runs with a 95% confidence interval.

Approach P accuracy Q MSE VeJ cosine similarity

ML
GAMPS
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Table 1: Estimation performance on the gridworld environment comparing
Maximum Likelihood estimation (ML) and our approach (GAMPS). 1000
training and 1000 validation trajectories per run. Average results on 10
runs with a 95% confidence interval.

Approach P accuracy Q MSE VeJ cosine similarity

ML 0.765 + 0.001 11.803 £ 0.158
GAMPS  0.357£0.004 633.835 £ 12.697
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Two-areas Gridworld - Gradient Approximation Experiment

Table 1: Estimation performance on the gridworld environment comparing
Maximum Likelihood estimation (ML) and our approach (GAMPS). 1000
training and 1000 validation trajectories per run. Average results on 10
runs with a 95% confidence interval.

Approach P accuracy Q MSE VeJ cosine similarity
ML 0.765 £ 0.001 11.803 £ 0.158 0.449 £ 0.041
GAMPS 0.357 £0.004  633.835 + 12.697 1.000 £ 0.000
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Two-areas Gridworld - Policy Improvement Results

REINFORCE =~ = PGT
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Number of iterations Number of iterations Number of iterations
(a) 10 trajectories (b) 50 trajectories (c) 100 trajectories

Figure 1: Average return on the Two-areas gridworld with different dataset
size. ML is the same as GAMPS but using maximum likelihood model
estimation (20 runs, mean =+ std).
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Minigolf (Continuous stat

‘actions) - Policy

Improvement Results

-15
g
£ 2
=
&
= 25
2
<

—30

— ML

+ GAMPS

= = REINFORCE
PGT

0 10 20
Number of iterations

30

Figure 2: Average return using a 50 trajectories dataset on the minigolf

environment (10 runs, mean =+ std).

Experimental Analysis
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+ We analyzed the Model-Value-based Gradient

+ We showed that ML is suboptimal for model learning when
computing the MVG

+ We built the GAMPS algorithm based on this intuition

- We validated the theoretical analysis with experimental evidence
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Future Work

Possible extensions and related research directions:

+ Online extension

- Different methods for computing Q™7
- Estimation of the reward function

+ Deeper theoretical analysis

- Other gradient-aware MVGs (e.g., inspired by SVG)
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The Bitter Lesson

In Model-based RL

Maximum likelihood is an agnostic way to learn a model, but better
loss functions exist when more information is available.

More generally - The meta-learning perspective
If a system uses different internal modules, the learning algorithm of a

module can benefit from the knowledge about the learning algorithm
of another.
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The End!

Thank you for the attention!

!Paper submitted to AAAT 2020. 43/43
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AlphaStar: Mastering the Real-Time Strategy Game StarCraft II.

https://deepmind.com/blog/
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