Multirobot Coverage of Linear Modular Environments

Honours Programme Scientific Research in Information Technology

December 13, 2019

Mirko Salaris: mirko.salaris@mail.polimi.it

- a known environment
- a set of points of interest
- a mobile robot, with a 'covering tool' of finite size

Goal:

- optimal tour
- covers all the points

- to physically pass over a specified set of points

[E Galceran, M Carreras, 2013]

- to physically pass over a specified set of points
- to gather data about the environment

- to physically pass over a specified set of points
- to gather data about the environment
- for search and rescue applications

Multirobot Coverage - Motivation

Advantages:

- it provides robustness (i.e., supporting the loss of a robot)
- it increases efficiency

Drawbacks:

- coordination issues
- increased algorithmic complexity

[N. Karapetyan et al., 2017]

Multirobot Coverage - Definition

- a known environment
- a set of points of interest
- **multiple** mobile robots, with a 'covering tool' of finite size

Goal:

- optimal set of tours
- coverage of all the points

Common metrics: MINSUM, MINMAX

Preliminaries - Environment representation

- points of interest of the environment \rightarrow vertices
- connections between points \rightarrow edges

Traveling Salesperson Problem (TSP):

"Given a set of cities and the distances between each pair of them, what is the shortest possible route that visits each city and returns to the origin city?"

Cities \rightarrow vertices Distances \rightarrow edges with associated cost Origin city \rightarrow depot

[D. Applegate et al., 2006]

Multirobot coverage as mTSP

Multiple Traveling Salesperson Problem (mTSP):

"Given a set of vertices and a cost metric defined in terms of distance or time, let there be *m* robots located at a single initial vertex, called depot. The remaining vertices are called 'intermediate vertices'. The mTSP consists of finding tours for all the *m* robots, which all start and end at the depot, such that each intermediate vertex is visited exactly once and the total cost of visiting all the vertices is minimized"

[Bektas, T., 2006]

Multirobot coverage as mTSP

Multiple Traveling Salesperson Problem (mTSP):

"Given a set of vertices and a cost metric defined in terms of distance or time, let there be *m* robots located at a single initial vertex, called depot. The remaining vertices are called 'intermediate vertices'. The mTSP consists of finding tours for all the *m* robots, which all start and end at the depot, such that each intermediate vertex is visited exactly once and the total cost of visiting all the vertices is minimized"

[Bektas, T., 2006]

Common metrics: MINSUM, MINMAX

NP-Hard!

\checkmark

Approximation algorithms

Intertwined issues of the mTSP:

- partitioning of the vertices
- computation of the tours

Always possible:

- create *m* copies of the original depot
- solve the TSP on this new graph
- split the obtained solution in the copies of the depot

Frederickson et al. (1976): tour-splitting heuristic

Approximation factor:
$$\frac{5}{2} - \frac{1}{m}$$

Partitioning vertices - Clustering

Partitioning vertices - Clustering

mTSP approximation bounds

Frederickson, 1976:
$$(\frac{5}{2} - \frac{1}{m}) \rightarrow$$
 Best theoretical guarantee in the state-of-the-art

Tighter approximation bounds

Tailored algorithms for constrained environments

Example

mTSP on trees with multiple depots:
$$(2 - \frac{2}{m+1})$$
 approximate algorithm

[Averbakh and Berman, 1997]

Purpose of this research

- new class of environments: *modular environments*
- analysis of *integer solutions* on *linear* modular environments
- analysis of the obtained approximation bound
- definition of an algorithm for integer solutions
- experimental comparison with two state-of-the-art algorithms

An environment:

- constituted by sub-parts, the modules
- connected through a linking structure

Residential buildings

Residential buildings

Residential buildings

Tract housing

Photo credits: IDuke (this edited version: Sting) [CC BY-SA 2.5 (https://creativecommons.org/licenses/by-sa/2.5)]

Linear Modular Environments

A modular environment in which:

- modules are orderly aligned
- along a linear linking structure
- connecting each module to the next one

Real-world linear modular environments:

- multi-floor buildings with a single staircase
- floors of large hotels or hospitals with a single corridor
- tract houses accessible by a single street

Problem formalization

- *n* disjoint subgraphs $G_i = (V_i, E_i) \rightarrow$ the modules
- for each module G_i a doorway $d_i \in V_i$
- d₁ is the depot
- edges $(d_i, d_{i+1}) \rightarrow \text{linking structure}$
- a metric t defined on $V_i \times V_i$ and any pair d_i , d_{i+1}
- *m* homogeneous robots
- For each module G_i , we compute its TSP solution and therefore $t_{tsp}(i)$

Given a linear modular environment:

- assign to each robot a tour
- starting from and ending at the depot
- such that all the vertices of the modules are eventually covered
- with the minimum makespan

$$\delta = \frac{\max_i t_{tsp}(i)}{\sum_i t(d_i, d_{i+1})}$$

where
$$t_{tsp}(i)$$
 is the time to cover the module ${\it G}_i$

Example of wide instance

Shape index

$$\delta = \frac{\max_i t_{tsp}(i)}{\sum_i t(d_i, d_{i+1})}$$

where $t_{tsp}(i)$ is the time to cover the module G_i

wide instances: $\delta
ightarrow \infty$

deep instances: $\delta \to 0$

Modules already are clusters of vertices Notice: *n* clusters, *m*<*n* robots

How to exploit this peculiarity?

Intuitive approach: assign clusters to robots

Integer solutions

A solution is in integer form if for each robot *r* there exist *i*,*j* such that:

- for any $i \le h \le j$, the *h*-th module is entirely covered by *r*
- *r* does not take part to the coverage of any other module

Theorem

There must exist an integer solution such that:

$$1 \le \frac{SOL_{int}}{OPT} \le 1 + \frac{\delta}{2}$$

$$OPT = (s_1^*, ..., s_m^*)$$

+
$$T^*_r$$
 Time budget to cover modules

$$SOL_{int} = (s_1, \dots, s_m)$$

$$ightarrow \sigma_r^*$$
 Last module covered by r

$$SOL_{int} \le OPT + \max_{1 \le i \le n} t_{tsp}(i)$$

 $SOL_{int} \le OPT + \max_{1 \le i \le n} t_{tsp}(i)$

 $OPT \ge 2\sum_{i} t(d_i, d_{i+1})$

 $\delta = \frac{\max_i t_{tsp}(i)}{\sum_i t(d_i, d_{i+1})}$

 $\frac{SOL_{int}}{OPT} \le 1 + \frac{\delta}{2}$

From the Theorem:
$$SOL_{int} \leq (1 + \frac{\delta}{2})OPT$$

α -approximation algorithm for TSP \downarrow α -approximation algorithm for modular mTSP

Using Christofides, 1976:

$$SOL_{int} \leq \frac{\mathbf{3}}{\mathbf{2}}(1+\frac{\delta}{2}) OPT$$

For $\delta < 1 - \frac{1}{m}$ our bound is lower than that of Frederickson

For $\delta \to 0$ our bound approaches $\frac{3}{2}$

Preliminary definitions

 $\begin{array}{l} f(i,j,k) & \textit{makespan for } \textit{\textit{k}} \textit{ robots} \\ \textit{that cover modules from } \textit{\textit{i}} \textit{ to } \textit{\textit{j}} \end{array}$

Split point: module *h* such that

 $\sim k/2$ robots cover (*i*, *h*) $\sim k/2$ robots cover (*h*+1, *j*)

k robots

Preliminary definitions

$$f(i, j, k) = \min_{i \le h \le j} \max \begin{cases} f(i, h, \lfloor k/2 \rfloor) \\ f(h+1, j, \lceil k/2 \rceil) \end{cases}$$

If all $f(\cdot, \cdot, k') \quad k' < k$ are known, we can find f(i, j, k) in $\mathcal{O}(j - i)$

> Finding integer solutions

ALGORITHM 1. Given a modular mTSP instance and the value of $t_{tsp}(i)$ for each module i of the instance:

Naive complexity:

 $\bullet \mathcal{O}(n^2)$

• $\mathcal{O}(mn^3)$

 $\mathcal{O}(n)$

 $\mathcal{O}(m)$

- (a) Compute f(i, j, k) for the cases i = j and k = 1.
- (b) Set k = 2 robots.
- (c) For any $1 \le i \le j \le n$ compute f(i, j, k) and store the corresponding split points.
- (d) Increment k and repeat from (c) while $k \leq \lceil m/2 \rceil$.
- (e) Compute the split point for m robots visiting modules from 1 to n.
- (f) For each of the resulting halves, list recursively all the split _____ points.

 $\mathcal{O}(mn^3)$

Complexity improvements

Naive complexity

k is always divided by 2

binary search on prior *f*(*i*, *j*, *k*) values

 $\mathcal{O}(mn^3)$

 $\mathcal{O}(n^3 \log m)$

 $\mathcal{O}(n^2 \log n \log m)$

Analysis of the solutions on simple linear modular environments with identical modules, repeated

- varying *m*
- varying *n*
- varying distances between doorways (d_i, d_{i+1})

Comparison against two state-of-the-art mTSP algorithms

- Frederickson [Frederickson et al., 1976]
- AHP-mTSP [Vandermeulen et al., 2019]

Module A

40 vertices

 $t_{tsp}(A) = 198 \text{ m}$

circular topology

> Experimental analysis

Module A

40 vertices

 $t_{tsp}(A) = 198 \text{ m}$ circular topology

Module B

47 vertices

 $t_{tsp}(A) = 347 \,\mathrm{m}$

star topology

Module C 80 vertices $t_{tsp}(A) = 438$ m linear topology

Environments with

n (possibly varying) modules of type Module B

Covered with

m (possibly varying) robots

27 comparison cases:

- three patterns: *random, decreasing, increasing*
- three values of *n*: 30, 60, 120
- three values of *m*: *5, 10, 20*

Distance between doorways fixed to 20

Timeout of 1 hour for each instance

Decreasing pattern:

Increasing pattern:

First comparison algorithm: Frederickson

- compute the single-tour *R* over the whole environment
- split the TSP according to a heuristic

[Frederickson et al., 1976]

Second comparison algorithm: AHP-mTSP

- random partition of the whole environment (into *m* partitions)
- apply a series of improvements to the *m* partitions, repeatedly

[I. Vandermeulen et al., 2019]

Conclusion and future work

Efficient approximation algorithms for linear modular environments with an approximation bound lower than Frederickson bound

Our approach experimentally outperforms state-of-the-art algorithms

Future extensions:

- non-linear modular environments: circles, grids, trees
- multiple doorways
- non-integer solutions

Thank you for the attention

Questions?