
Politecnico di Milano • Honours Programme • April 2019 • Computer Science and Engineering Track

State of the Art on: Multi Agent Path Finding

Matteo Bellusci, matteo.bellusci@mail.polimi.it

1. Introduction to the research topic

The Multi-Agent Path Finding (MAPF) topic lies at the intersection between Artificial Intelligence (AI), Autonomous
Agents and Multi-Agent Systems (AAMAS), and Autonomous Robotics areas. In this region, we deal with intelligent
agents, namely entities able to perform, by taking movement actions in a physical environment, tasks that normally
require human intelligence. In general, researchers in this area study how autonomous cooperative agents can
accomplish different kinds of tasks in a efficient way. The robotics contribution is due to the fact that agents are
physical robots interacting with the world in several domains, like in warehouse logistics.

The main AI conferences are the Association for the Advancement of Artificial Intelligence conference (AAAI) and the
International Joint Conference on Artificial Intelligence (IJCAI). The International Conference on Autonomous Agents and
Multiagent Systems (AAMAS) covers the multi-agent area. Different works relative to MAPF have been discussed
in the Artificial Intelligence and Interactive Digital Entertainment (AIIDE), a conference sponsored by the AAAI, and
in the International Symposium on Combinatorial Search (SoCS). Similar topics are also discussed in the International
Conference on Robotics and Automation (ICRA), in the International Conference on Intelligent Robots and Systems (IROS),
and, secondly, in the International Conference on Interactive Collaborative Robotics (ICR).

The main AI journal is the Artificial Intelligence Journal (AIJ). The topic is also covered in different main Robotics
journals: IEEE Transactions on Robotics (T-RO), IEEE Robotics and Automation Letters (RA-L), IEEE Transactions on
Computational Intelligence and AI in Games (T-CIAIG), Autonomous Robots (AURO), and Robotics and Autonomous
Systems (RAS).

1.1. Preliminaries

To understand the topic and the functioning of the main algorithms shown in next section, some basic rudiments
of Graph Theory and AI techniques are needed.

Definition 1.1. A graph G = (V, E) is a mathematical structure that consists of a set of vertices, or nodes, V and a
set of edges E ⊆ V2, which are unordered pairs of vertices.

Definition 1.2. A vertex vi is said to be neighbor, or adjacent, of a vertex vj in some graph if vi is connected to vj
through an edge.

We introduce now a well-known algorithm in AI named A* (pronounced “A-star”) [8]. A* is a widely used
informed heuristic search algorithm in path planning and graph traversals. In its general form, A* is formulated in
terms of weighted graphs: given a start node and a goal node, it aims to find the cheapest path between them. The
idea is to rank all nodes in the frontier, i.e., the nodes that are already reached but not yet expanded, according to
a function f (n) and perform a best-first search. In A*, f (n) = g(n) + h(n), where g(n) is the cost from the start
node to n, and h(n) represents the heuristic estimated cost from node n to the goal node. The search quality of A*
is strictly correlated to the accuracy of the heuristic estimate h(n).

Definition 1.3. The heuristic function h(n) is said to be admissible if h(n) is always less than or equal to true
cheapest cost from n to the goal.

Definition 1.4. The heuristic function h(n) is said to be consistent if h(n) is always less than or equal to the sum
of the estimated distance from any neighboring node to the goal node and of the cost of reaching that neighbor.

Lemma 1.5. If the heuristic function h(n) is consistent and h(goal) = 0, then it is also admissible.

1



Politecnico di Milano • Honours Programme • April 2019 • Computer Science and Engineering Track

Hart et al. [8] provided proofs of completeness and optimality. When performing tree search or graph search
possibly re-exploring repeated nodes, if h(n) is admissible then A* finds an optimal solution. Moreover, when
performing graph search without re-exploring repeated nodes, if h(n) is consistent then A* finds an optimal
solution. For a complete reference about A* and path planning, see [21, 2].

1.2. Research topic

The task in MAPF problems is to find non-interfering paths for multiple agents, each one with a unique start
and goal position. An instance of the MAPF problem is formally a tuple 〈G, A, {si}, {gi}〉 where G = (V, E) is a
graph and A = {a1, ..., ak} is a set of k labeled agents and each agent ai has an associate start position si ∈ V and
goal position gi ∈ V. Time is discretized into timesteps. At initial timestep t0 each agent is located in its start
position. At each timestep, every agent can either change location moving to an adjacent vertex or wait at its
current position. Each action has an associate unit cost, except for the wait action if the agent has already reached
its goal.

A path πi for an agent ai can be modeled as a sequence of vertices (pt0 , ..., ptl ) which brings ai from pt0 = si to
ptl = gi. Each element of the sequence corresponds to a timestamp, starting from t0. A solution is just a set of k
paths. The task is to find a valid solution, i.e. a set of k non-conflicting paths, while minimizing a cumulative cost
function. Common cost functions are the flowtime, defined as the sum of the individual path costs (SIC), and the
makespan, defined as the maximum of the individual path costs.

In general two types of conflicts are considered. A vertex conflict is a tuple 〈ai, aj, v, t〉 meaning that agents ai
and aj are occupying the same vertex v at timestamp t. An edge conflict is a tuple 〈ai, aj, v, v′, t〉 meaning that from
timestamp t to t + 1 agent ai is traveling from v to v′ while aj is traveling from v′ to v, i.e., they are traveling along
an edge in opposite directions. In this sense a valid solution is a conflict-free solution.

MAPF is a challenging problem with several practical applications. For instance, MAPF is at the core of the
Kiva (Amazon Robotics) system [28], which has been successful in the marketplace and has brought innovation in
the warehouse logistics field. The Kiva system involves small autonomous robots to lift movable storage shelves.
Furthermore, MAPF can model numerous real-world problems in office robots [26], computer video games [13],
aircraft-towing vehicles [14] and in many other domains.

2. Main related works

2.1. Classification of the main related works

Many different types of algorithms are available for solving MAPF problems. In this section we show the two
main dimensions to classify MAPF solvers. The first dimension is related to solution quality provided by the
algorithm.

• Incomplete solvers are generally really fast, but don’t guarantee to find a solution, even if it exists.

• Complete solvers guarantee to find always a solution if it exists, but not necessarily the best one (according to
flowtime, makespan).

• Optimal solvers are usually the slowest, but they guarantee to find the best (according to flowtime, makespan)
solution if the problem is solvable.

The second dimension is related to the general idea behind the algorithm. In fact, the are three major approaches
for solving MAPF:

• Search-based solvers search the solution in a specific search space. Broadly speaking, they are designed to
deal with a flowtime solution measure.

2



Politecnico di Milano • Honours Programme • April 2019 • Computer Science and Engineering Track

• Procedure-based or rule-based solvers select actions for the agents following specific movement rules. In general
they are complete, very fast and can solve very large problems, but they provide solutions that are often far
from optimal.

• Reduction-based solvers translate the problem to another formalism exploiting knowledge of other problems.
They are typically designed to deal with a makespan solution measure.

The following is a summary table in which we have classified the main related works.

Classification of the main related works
Search-based Procedure-based Reduction-based

Incomplete [21][18]
Complete [10][23][11][3]
Optimal [20][27][7][15][16] [24][29][5]

2.2. Brief description of the main related works

Many algorithms have been proposed in recent years. We briefly describe some of the main relevant approaches
and techniques, illustrating their strengths and limits. Complete surveys are also available [12, 6].

2.2.1 A*-based Algorithms

A*-based Algorithms involve the use of A* [8]. Basically they perform a state-space search in which the states are
the locations of the agents and transitions are related to the joint actions of the agents. A common and simple
admissible heuristic is the Euclidean distance. The main issue of this approach is related to the branching factor that
may be exponential in the number of agents. However, several improvements are possible. For instance, M* [27]
dynamically mutates the branching factor based on conflicts, while Enhanced Partial Expansion A* (EPEA*) [7] tries
to avoid the generation of surplus nodes. In general, A*-based algorithms outperform other approaches in areas
dense with agents.

2.2.2 Operator Decomposition

The Operator Decomposition (OD) [20] aims to overcome the high branching factor and the generation of sur-
plus nodes. The idea is to decompose the standard operator for obtaining the next state into a sequence of
operators for individual agents. Hence, in the state-space search the transitions are related to the actions of a
single agent. This leads in considering intermediate states where not all the agents have selected their move. A
standard node is reached when all the agents have selected their move. Once the solution is found, non-expanded
intermediate nodes are not developed into standard nodes, reducing the number of surplus nodes.

2.2.3 Independence Detection

The Independence Detection (ID) [20] framework pursues the idea to split the problem into a series of (smaller)
sub-problems detecting independent groups of agents. Two groups of agents are independent if there is an optimal
solution for each group such that no conflicts exists between the two solutions. Thus, the ID framework acts as a
reducer for the number of agents. The Simple Independence Detection (SID) algorithm is the simplest approach, it
basically merges two group of agents when a conflict arise between their solutions.

2.2.4 Conflict-Based Search

The Conflict-Based Search (CBS) [15] algorithm is a two-level complete and optimal MAPF solver. The low-

3



Politecnico di Milano • Honours Programme • April 2019 • Computer Science and Engineering Track

level searches for an optimal path for each agent individually, generally using an A*-based procedure, taking
into account constraints imposed by the high-level. When a conflict is found between individual paths the
high-level expands a constraint tree via a split action, keeping all information about the conflict, and imposes
new constraints to the agents in order to avoid the conflict. The idea is to try to solve the conflict in all the
possible ways. A constraint essentially prohibits an agent from being in a certain position at a given time. The
algorithm is exponential in the number of conflicts. An improved version of CBS is available with the name of
Improved Conflict-Based Search (ICBS) [1]. In general, CBS-based solvers generally outperform other approaches in
environments with many bottlenecks.

2.2.5 Increasing Cost Tree Search

The Increasing Cost Tree Search (ICTS) [16] algorithm is another example of two-level solver. Unlike CBS, which
plans for single agents under constraints, ICTS works in a k-agent search space, like A*. The high level, searching
the increasing cost tree (ICT), asks the low level to find a set of k non-interfering paths, each with a specific length.
A compact data-structure called multi-value decision diagram (MDD) [19] is involved to store all single-agent paths
of a certain length, for each agent. At each request the high level requires different specific path lengths, starting
from the best case in order to guarantee optimality. The algorithm halts when the low level finds such a valid
solution. The solver is exponential in ∆, defined as the depth of the lowest cost ICT goal node. However, there
exists different pruning techniques for the high-level [17]. For instance, ICTS+3E is an enhanced version of ICTS in
which we use information about small groups of up to 3 agents and their internal conflicts. In general, ICTS-based
algorithms outperform other approaches in open areas with few agents.

2.2.6 SAT-based Algorithms

SAT-based solvers [24] are reduction-based approaches. They exploit the properties of the Boolean satisfiabil-
ity problem. The idea is to use layered (temporally extended) graphs to encode plans of a known length and use
multi-valued state variables to encode the position of the agents in the layers. Generally, they are adopted for
optimizing the makespan of a sub-optimal solution, and not for solving the entire problem instance. However,
Surynek et al. [25] recently introduced a reduction-based SAT solver for the flowtime variant. An improved variant
called MDD-SAT, employ the use of MDDs to reduce the number of propositional variables in SAT formulas. In
general, search-based methods are faster for easier problems while SAT methods are faster for harder problems.

2.2.7 Other Works

There are also other relevant works. For instance, Sturtevant [22] has made available a standard test set of
grid-based maps and problems on the maps for benchmark, making experimental results more comparable across
papers.

In Figure 1 we show three of the most frequently used test maps that are taken from the Dragon Age: Origins
(DAO) game. The den520d map (left) is used to test the performance of the algorithms in an environment with
wide open spaces. On the contrary, the brc202d map (right) is used to test the performance of the algorithms in
an environment with narrow corridors and bottlenecks. Finally, the ost003d map (middle) is a open space with
almost isolated rooms and lies, intuitively, in the middle between the other two types of environments.

2.3. Discussion

Optimal single agent path finding is tractable (e.g., using the Dijkstra’s algorithm [4]) while optimal (according to
flowtime, makespan) MAPF is NP-hard [30]. The choice of the algorithm to apply depends on various factors
related to the instance of the problem. Felner et al. [6] showed an interesting comparison between the main
approaches. The results emphasize that there is no universal winner. However, as the authors confirm, a more
systematic comparison between existing solvers is needed in order to understand which algorithm performs better

4



Politecnico di Milano • Honours Programme • April 2019 • Computer Science and Engineering Track

Figure 1: DAO maps den520d (left), ost003d (middle) and brc202d (right)
.

given the initial problem settings.
Moreover, when generalizing MAPF to real-world scenarios different kinds of issues arise. According to

Felner et al. [6], more research should be done to adapt existing MAPF solvers to real-world domains. In fact,
Ma et al. [12] have highlighted that improving existing solvers or developing new approaches for classical
MAPF is insufficient because, in several real-world scenarios, new domain properties (e.g., uncertainty in actions)
are required. For instance, classical MAPF formulation ignores the fact that robot movements are subject to
kinematic constraints [9]. Furthermore, in classical MAPF problems, we make strong assumptions concerning the
environment. Real-world environments may have different properties, while classical MAPF contemplates only a
fixed discretized environment.

References

[1] Boyarski, E., Felner, A., Stern, R., Sharon, G., Tolpin, D., Betzalel, O., and Shimony, S. E. ICBS:
Improved conflict-based search algorithm for multi-agent pathfinding. In Proceedings of the International Joint
Conference on Artificial Intelligence (2015), pp. 740–746.

[2] Cui, X., and Shi, H. A*-based pathfinding in modern computer games. International Journal of Computer
Science and Network Security 11, 1 (2011), 125–130.

[3] De Wilde, B., Ter Mors, A. W., and Witteveen, C. Push and rotate: Cooperative multi-agent path planning.
In Proceedings of the International Conference on Autonomous Agents and Multi-agent Systems (2013), pp. 87–94.

[4] Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische mathematik 1, 1 (1959), 269–271.

[5] Erdem, E., Kisa, D. G., Öztok, U., and Schüller, P. A general formal framework for pathfinding problems
with multiple agents. In Proceedings of the AAAI Conference on Artificial Intelligence (2013), pp. 290–296.

[6] Felner, A., Stern, R., Shimony, S. E., Boyarski, E., Goldenberg, M., Sharon, G., Sturtevant, N., Wagner,
G., and Surynek, P. Search-based optimal solvers for the multi-agent pathfinding problem: Summary and
challenges. In Proceedings of the Symposium on Combinatorial Search (2017).

[7] Goldenberg, M., Felner, A., Stern, R., Sharon, G., Sturtevant, N., Holte, R. C., and Schaeffer, J.
Enhanced partial expansion A*. Journal of Artificial Intelligence Research 50 (2014), 141–187.

[8] Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis for the heuristic determination of minimum cost
paths. IEEE Transactions on Systems Science and Cybernetics 4, 2 (1968), 100–107.

5



Politecnico di Milano • Honours Programme • April 2019 • Computer Science and Engineering Track

[9] Hönig, W., Kumar, T. S., Cohen, L., Ma, H., Xu, H., Ayanian, N., and Koenig, S. Multi-agent path finding
with kinematic constraints. In Proceedings of the International Conference on Automated Planning and Scheduling
(2016).

[10] Kornhauser, D., Miller, G., and Spirakis, P. Coordinating pebble motion on graphs, the diameter of
permutation groups, and applications. In Proceedings of the Annual Symposium on Foundations of Computer
Science (1984), pp. 241–250.

[11] Luna, R., and Bekris, K. E. Push and swap: Fast cooperative path-finding with completeness guarantees. In
Proceedings of the International Joint Conference on Artificial Intelligence (2011), pp. 294–300.

[12] Ma, H., Koenig, S., Ayanian, N., Cohen, L., Hönig, W., Kumar, T., Uras, T., Xu, H., Tovey, C., and Sharon,
G. Overview: Generalizations of multi-agent path finding to real-world scenarios. In Proceedings of the
IJCAI-16 Workshop on Multi-Agent Path Finding (2016).

[13] Ma, H., Yang, J., Cohen, L., Kumar, T. K. S., and Koenig, S. Feasibility study: Moving non-homogeneous
teams in congested video game environments. In Proceedings of the Artificial Intelligence and Interactive Digital
Entertainmen (2017), pp. 270–272.

[14] Morris, R., Pasareanu, C. S., Luckow, K., Malik, W., Ma, H., Kumar, T. S., and Koenig, S. Planning,
scheduling and monitoring for airport surface operations. In Proceedings of the AAAI Conference on Artificial
Intelligence (2016).

[15] Sharon, G., Stern, R., Felner, A., and Sturtevant, N. Conflict-based search for optimal multi-agent path
finding. In Proceedings of the AAAI Conference on Artificial Intelligence (2012), pp. 563–569.

[16] Sharon, G., Stern, R., Goldenberg, M., and Felner, A. The increasing cost tree search for optimal
multi-agent pathfinding. In Proceedings of the International Joint Conference on Artificial Intelligence (2011),
pp. 662–667.

[17] Sharon, G., Stern, R. T., Goldenberg, M., and Felner, A. Pruning techniques for the increasing cost tree
search for optimal multi-agent pathfinding. In Proceedings of the Annual Symposium on Combinatorial Search
(2011).

[18] Silver, D. Cooperative pathfinding. In Proceedings of the Artificial Intelligence and Interactive Digital Entertainment
(2005), pp. 117–122.

[19] Srinivasan, A., Ham, T., Malik, S., and Brayton, R. K. Algorithms for discrete function manipulation.
In Proceedings of the IEEE International Conference on Computer-aided Design. Digest of Technical Papers (1990),
pp. 92–95.

[20] Standley, T. Finding optimal solutions to cooperative pathfinding problems. In Proceedings of the AAAI
Conference on Artificial Intelligence (2010), pp. 173–178.

[21] Stout, B. Smart moves: Intelligent pathfinding. Game Developer Magazine 10 (1996), 28–35.

[22] Sturtevant, N. R. Benchmarks for grid-based pathfinding. IEEE Transactions on Computational Intelligence and
AI in Games 4, 2 (2012), 144–148.

[23] Surynek, P. A novel approach to path planning for multiple robots in bi-connected graphs. In Proceedings of
the International Conference on Robotics and Automation (2009), pp. 3613–3619.

[24] Surynek, P. Towards optimal cooperative path planning in hard setups through satisfiability solving. In
Proceedings of the The Pacific Rim International Conference on Artificial Intelligence (2012), pp. 564–576.

6



Politecnico di Milano • Honours Programme • April 2019 • Computer Science and Engineering Track

[25] Surynek, P., Felner, A., Stern, R., and Boyarski, E. Efficient sat approach to multi-agent path finding under
the sum of costs objective. In Proceedings of the European Conference on Artificial Intelligence (2016), pp. 810–818.

[26] Veloso, M., Biswas, J., Coltin, B., and Rosenthal, S. Cobots: Robust symbiotic autonomous mobile service
robots. In Proceedings of the International Conference on Artificial Intelligence (2015), pp. 4423–4429.

[27] Wagner, G., and Choset, H. M*: A complete multirobot path planning algorithm with performance bounds.
In Proceedings of the International Conference on Intelligent Robots and Systems (2011), pp. 3260–3267.

[28] Wurman, P. R., D’Andrea, R., and Mountz, M. Coordinating hundreds of cooperative, autonomous vehicles
in warehouses. In Proceedings of the AAAI Conference on Artificial Intelligence (2007), pp. 1752–1759.

[29] Yu, J., and LaValle, S. M. Planning optimal paths for multiple robots on graphs. In Proceedings of the
International Conference on Robotics and Automation (2013), pp. 3612–3617.

[30] Yu, J., and LaValle, S. M. Structure and intractability of optimal multi-robot path planning on graphs. In
Proceedings of the AAAI Conference on Artificial Intelligence (2013), pp. 1443–1449.

7


	Introduction to the research topic
	Preliminaries
	Research topic

	Main related works
	Classification of the main related works
	Brief description of the main related works
	Discussion


