Research Project Proposal:
Policy space identification in Configurable MDPs

Guglielmo Manneschi
guglielmo.manneschi@mail.polimi.it
CSE Track
Markov Decision Process

Framework to model **sequential decision-making** problems [1]

- **States**
 - How the agent perceives the world

- **Actions**

- **Rewards**
 - How good the agent behaves

- **Environment dynamics**

Markov Decision Process

- **Policy** $\pi(a|s)$
 - Agent behaviour

- **Expected return** $J_\pi = \mathbb{E}_\pi \left[\sum_{t=1}^{T} R_t \right]$
 - Expected sum of rewards in a complete episode
 - How good is a certain policy
Markov Decision Process

- **Solution** of an MDP
 - Find a policy that maximizes the expected return
 \[\pi^* = \arg \max J_\pi \]
 - If the policy is parametric, gradient based approach [2]

Policy space

- In case of a large (or infinite) state space, computing the policy for every state is infeasible.

- Instead, represent the state with a **feature vector** $\phi(s)$.

- The policy is a function defined by a **parameter vector** θ: $\pi_\theta(a | \phi(s))$.

- The parameters combine the state features observed by the agent.

- To find the best policy, the agent searches inside a space of functions (or parameters) called **policy space**.
Policy space identification

• **Goal** of the research project

• If we can only observe an agent, it can be useful to identify its policy space
 • to estimate the agent's capabilities
 • to discover what can the agent perceive
 • to retrieve the reward function (IRL) [3]

Policy space identification

• E.g. the policy of an agent is defined by an **unknown parameter vector**

 • The higher a parameter the more an action depends on that feature

• We have a greater set of parameters (and features)

 • Understand which ones are actually used by the agent
Policy space identification

- Limits of the classical MDP framework
 - **Some state features may be useless** for a certain task
 - It may appear that the agent cannot see them
Configurable MDP

- **Configurable** Markov Decision Process [4]
- Novel framework
- Extension of MDP
- Possibility to configure the environment with a set of parameters

Configurable MDP

• We want to solicit the agent to use certain features

 • Select an environment where the task requires having access to those features to be solved

 • Put the agent in this environment and let it learn the best policy

 • Estimate the value of the parameters (in our policy space)

• Repeat with multiple environments until we have enough confidence
Research project

Gantt diagram of the research project

Analysis of the State of the Art
Theoretical analysis of the problem
Implementation of the algorithms
Experimental evaluation
Paper writing
Thanks for your attention