Research Project Proposal: Policy space identification in Configurable MDPs

Guglielmo Manneschi guglielmo.manneschi@mail.polimi.it CSE Track

Markov Decision Process

Framework to model sequential decision-making problems [1]

- **States**
 - How the agent perceives the world
- Actions
- Rewards
 - How good the agent behaves

Environment dynamics

[1] Richard S. Sutton and Andrew G. Barto. 1998. Introduction to Reinforcement Learning (1st ed.). MIT Press, Cambridge, MA, USA.

Markov Decision Process

- Policy $\pi(a|s)$
 - Agent behaviour

- Expected return $J_{\pi} = \mathbb{E}_{\pi} \left[\sum_{t=1}^{T} R_t \right]$
 - Expected sum of rewards in a complete episode
 - How good is a certain policy

Markov Decision Process

• **Solution** of an MDP

- Find a policy that maximizes the expected return
- If the policy is parametric, gradient based approach [2]

[2] Peters, Jan, and Stefan Schaal. "Reinforcement learning of motor skills with policy gradients." Neural networks 21.4 (2008): 682-697.

$\pi^* = \arg \max J_{\pi}$

Policy space

- In case of a large (or infinite) state space, computing the policy for every state is infeasible
 - Instead, represent the state with a **feature vector** $\phi(s)$
 - The policy is a function defined by a **parameter vector** $heta \colon \pi_{ heta}(a|\phi(s))$
 - The parameters combine the state features observed by the agent
- To find the best policy, the agent searches inside a space of functions (or parameters) called **policy space**

Policy space identification

- **Goal** of the research project
- - to estimate the agent's capabilities
 - to discover what can the agent perceive
 - to retrieve the reward function (IRL) [3]

[3] Ng, Andrew Y., and Stuart J. Russell. "Algorithms for inverse reinforcement learning." Icml. Vol. 1. 2000.

• If we can only observe an agent, it can be useful to identify its policy space

Policy space identification

- E.g. the policy of an agent is defined by an unknown parameter vector
 - The higher a parameter the more an action depends on that feature

- We have a greater set of parameters (and features)
 - Understand which ones are actually used by the agent

Policy space identification

- Limits of the classical MDP framework
 - Some state features may be useless for a certain task
 - It may appear that the agent cannot see them

Configurable MDP

- **Configurable** Markov Decision Process [4]
 - Novel framework
 - Extension of MDP
 - Possibility to configure the environment with a set of parameters

[4] Metelli, Alberto Maria, Mirco Mutti, and Marcello Restelli. "Configurable Markov Decision Processes." ICML. 2018.

Configurable MDP

- We want to solicit the agent to use certain features
 - Select an environment where the task requires having access to those features to be solved
 - Put the agent in this environment and let it learn the best policy
 - Estimate the value of the parameters (in our policy space)
- Repeat with multiple environments until we have enough confidence

Research project

	11/18]
Research Project		
Analysis of the State of the Art	P1	
Theoretical analysis of the pro	blem	
Implementation of the algorith	ms	
Experimental evaluation		
Paper writing		

Gantt diagram of the research project

Thanks for your attention