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1. Introduction to the research topic [max 2 pages]

Machine learning (ML) is a subfield of artificial intelligence whose aim is the design of algorithms able to learn
from data exploiting statistical tools. In reinforcement learning (RL) an agent acts in an unknown or not completely
known environment with the goal of maximizing an external reward signal (Sutton and Barto, 1998). Transfer
learning (TL) is another ML subfield that focuses on exploiting knowledge or structure derived from a learning
problem to enhance learning on a related problem. Many approaches have been proposed concerning transfer
learning in reinforcement learning (TLRL), which depend on the type of structure it is possible to exploit, what it is
retained useful to transfer, and the goal of the transfer step. As already shown in different studies, the importance
of these methodologies is that they can be used to speed up learning in a very effective way.

Looking at the expert’s opinions and at the attendance trends, for what concerns the general topic of artificial
intelligence, some relevant conferences are AAAI and IJCAI. NeurIPS and ICML are instead focused on machine
learning. Important journals are instead the Journal of Machine Learning Research (Microtome), Transactions on Pattern
Analysis and Machine Intelligence (IEEE), Machine Learning (Springer). All of these mentioned conferences and
journals are also highly valued in ranking portals, such as [1].

1.1. Preliminaries

Reinforcement learning
The problem of RL is usually formalized as a Markov decision process (MDP) [32], that is defined as a tuple
x S , A, P , R, γ y, in which S is the state space in which the agent moves, A is the set of available actions,
P : S

�
A Ñ PpSq is a transition function, denoting the probability of reaching a given state taking an action in a

state, R : S
�

A Ñ R is the reward signal beforementioned, and γ P r0, 1q is the discount factor. A stationary
randomized control policy is a mapping π : S Ñ PpAq. At each time stamp (t) the agent chooses an action
according to at � πp�|stq. Solving an MDP means finding the optimal policy π�, that is the policy that maximizes
the accumulated discounted reward. RL comes into help when the dynamics of the environment are unknown
or difficult to be modelled, or when the model of the environment is too complex to be solved exactly, so that
approximate solutions are searched for.

The Markovian property, that is Ppst�1|st, atq � Ppst�1|st, at, st�1, at�1, ..., s0, a0q, or, in a more informal way,
the future is independent of the past given the present, is an important property of these stochastic processes.
The value function Vπpsq and the action value function Qπps, aq of a policy π are defined as the expected
discounted reward starting from state s or action pair (s,a), respectively, and following policy π. The value function
and action value function associated to π� are usually denoted as Q� and V�. As already mentioned, a typical
goal of RL is maximizing the cumulated reward, learning π�. An equivalent goal is the one of minimizing the
regret, that is defined as the difference, in terms of cumulated rewards, between the optimal policy and the learnt
policy.

RL algorithms applied to MDPs can be broadly categorized into model-based and model-free approaches: the
former use estimates of the empirical reward and transition distributions to solve the problem, while the latter do
not keep information about the model of the MDP.

In recent years, it is common to design both RL algorithms in terms of sample complexity of exploration, i.e. the
number of timestamps t in which the policy is sub-optimal w.r.t. a fixed quantity ε ¡ 0, that is Vtpstq   V�pstq � ε.
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This definition may change a bit w.r.t. the settings that the algorithms encounter. In other words, the goal is
usually to design an algorithm that can transfer in such a way as to be able to trade-off exploration of the state
action space and exploitation of the knowledge it has from source tasks and the knowledge it has collected in the
target task.

Transfer learning
The core idea of TLRL is that the experience gained in learning to perform one or more RL task (source tasks) can
help to improve learning performance in a related task (target task) [36]. Generally speaking, it can be formalized
as follows: given a set of pairs pm, emq, where m is a source task and em is the experience collected under m, and
some performance metric p, the goal is to achieve better results according to p in a target task mnew w.r.t. the case
where the beforementioned set was not present.

As in the standard RL case, the sample complexity is also used in transfer settings.
Although TL applied to RL has been shown to be able to speed up learning, it is not always possible to read in the
literature guarantees on when the approach will fail. For instance, using only non-related source tasks will hardly
provide benefits in the target tasks and more likely they will hurt performances. This problem is referred to as
negative transfer. Designing algorithms that avoid negative transfer is an important aspect.

Tools
According to the last data available on the web, Python is the most widely used programming language in the ML
field. Several efficient Python libraries can be adopted to support the development of machine learning projects.
Some of the most popular examples are: scikit-learn[31], TensorFlow[2], theano[38], Keras[16], and Pytorch[30].

For what concerns RL, the developer has usually to develop at least a simulated environment in which the
agent should run the learning algorithm under consideration. Some frameworks that provides this possibility are
Arcade Learning Environment [11], OpenAIgym [13] and DeepMind Lab [10]. It is important to note that, while for
ML there exists standard datasets on which it is possible to test the algorithms, the RL research community has
yet to adopt a unified benchmark of problems. However, there are a number of problems of different complexity
that are often considered to test the performance of a learning algorithm. For instance, some common settings
that consider continuous state-action spaces are cartpole, acrobot and mountain car. Atari games are also used to test
the quality of a solution. For what concerns discrete spaces, it is possible to discretize continuous settings or, for
example, use a grid navigation world with the purpose of reaching a goal state.
For what concerns transfer, to the authors knowledge, there is no particular framework or library that supports
the development of TLRL algorithms, and the problem exposed for RL extends to this more specific setting. Again,
problems mentioned above can be slightly modified and adapted to the transfer context. For instance, it is possible
to study a grid navigation world that has a door whose position varies between the tasks, and the goal of the
agent is to reach a certain goal state.

1.2. Research topic

RL algorithms have already shown their great capabilities in many application fields [26] [23] [15]. Nevertheless,
two problems keep affecting the usage of these techniques, which are the sample complexity and safety. The
former is mainly due to the fact that training the algorithms can be really a slow process and, even for not so
complex problems, many samples are needed to reach good performance levels. The latter is because, at the
beginning of the training phase, the agent may act in a dangerous way, taking actions that none of us would
consider intelligent. This can be particularly dangerous for applications involving robots: for instance, considering
the case of autonomous driving, if the agent takes very bad decision, life of other people can be at risk. Transfer
learning applied to the field of reinforcement learning can help to address these classic problems speeding up the
learning phase by re-using information and structure from previously solved tasks. Taking, for example, the case
of a robot that has to learn how to swing a club of a certain mass m and a certain length l: if knowledge on how
to swing clubs of different weight and length is available, the learning process can easily speed up by means of
transfer.
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2. Main related works [max 3 pages]

2.1. Classification of the main related works

In transfer learning there are many different possibilities and settings defined by: the task difference assumptions,
the source task selection, that is if the agent has to select relevant source tasks or if they are already provided, task
mappings, that is the knowledge that the agent has on how tasks are related to each other, transferred knowledge, that
is the type of information that has to be transferred, and, finally, the allowed learners, which are possible restrictions
that the agent may have in terms of algorithm to apply.
When dealing with TL, it is possible to encounter different evaluation metrics in the literature, such as the total
training complexity, the initial performance (jumpstart), the total reward (or equivalently regret), the transfer ratio (i.e. the
ratio between the total reward accumulated by the transfer learner divided by the reward accumulated by the
non-transfer learner) or the time to reach a pre-specified performance level. However, in recent works, the most used
seems to be the regret and the jumpstart performances.
There are also other differences between transfer learning approaches. Indeed, it is possible to consider different
settings that the agent may have to face when dealing with tasks. For instance, the agent may face tasks sampled
from a certain distribution one after the other (i.e. lifelong RL [3]), or it may have a set of sources tasks, finite or
infinite, from which it can extract information.
Due to space limitation, in the rest of this document, the focus will be mainly on the dimensions of task difference,
knowledge that is available in the source tasks, and the evaluation metric.
There are various steps that can be involved in the transfer: the agent should begin from the given source tasks
and select the ones to be transferred; then it should learn the relationship between these selected tasks and the
target task; and, finally, it should transfer knowledge from the sources to the target. Usually, research studies and
algorithms focus only on one of these steps, while a unified framework that performs all these tasks at the same
time is still missing. Moreover, the different performance metrics and settings lead to difficulties in comparing
different approaches.

2.2. Brief description of the main related works

Model-free approaches
Most of the transfer approaches (see Table 1) present in the literature are model-free.
In many model-free approaches, value functions are subject to transfer. For instance, in [39] the agent is given a
finite set of source tasks sampled from some distribution and a parametric approximation to their optimal value
functions is available. The source tasks are used to learn a prior distribution over the optimal value functions and
provide a variational approximation of the corresponding posterior in a new target task. The proposed method
allows tasks to have different transition matrices and rewards, and works online using regret as a performance
index. The approach investigated in [42] focuses on providing theoretical guarantees, under some assumptions,
for the convergence rate of transferring action-value functions to a target task solved via Q-learning [43]. They
again take into consideration the case in which the transition matrix and rewards can be different, and consider
the regret as the performance metric.

A different approach is based on transferring samples from the source tasks to the target task. When only
the reward function is different, [25] suggests that the transitions samples obtained from a task can be reused in
any other task, and combine this idea with the optimism in the face of uncertainty principle [20]. Another approach
that considers the possibility of transferring samples is the one presented in [6]: they consider an approach that
applies to a lifelong learner that operates in an adversarial setting and has to learn multiple tasks online while
enforcing safety constraints on the learned policy. Here, both the reward and the transition matrix can differ.

Other methods such as [27], instead, implement a mechanism for re-useing previously learned policies: their
algorithm is able to learn when and which source policy is best to re-use, as well as when to terminate its reuse.
The RLPA algorithm proposed in [8] always considers to reuse policies, but it exploits a set of input policies
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and choose the best one in the set. The authors prove that the regret is sub-linear in
?

T and independent of the
size of the state and action space. The work exposed in [3], instead, identifies the initial policy that optimizes
the expected performance over the distribution of tasks for increasingly complex classes of policy and task
distributions. Simultaneously, they consider an initialization method for Rmax [12] and Delayed Q-learning [34]
algorithms that preserves the PAC guarantees. The work proposed in [29], instead, is based on clustering and
considers the lifelong RL setting: when the number of MDPs grows too much, the transfer becomes ineffective
because the agent should take too long to test old policies. So, the algorithm clusters them and chooses as source
tasks the representatives of each cluster. Policies from source tasks are re-used following an algorithm that takes
inspiration from EXP-3 [7]. In the case of deep RL [24], an approach that considers policies is exposed in [37],
where multiple agents are trained together while being forced to stay close to a policy that is shared among tasks.
Other algorithms studied to empower deep RL algorithms have also been investigated recently, for instance in [9]
and [44]. Another example is presented in [17], which shows that neural network policies can be decomposed into
"task-specific" and "robot-specific" modules: the first can be shared among robots, while the latter can be shared
between multiple tasks in a robot.

When any task difference is allowed, [4] develops a method to optimize a shared repository of transferable
knowledge and learns projection matrices that specialize that knowledge to different task domains. The infor-
mation available to carry out the transfer is sample. The sample-based approach has been adopted also in [35]:
here samples are selected to be transferred to a target task that is being learned with a model-based RL algorithm.
Other studies, such as [5], use an unsupervised manifold alignment to learn inter-task mappings and transfer
samples between different task domains. [22] shows, instead, that an agent can learn a portable shaping function
from experience in a sequence of tasks.

Model-based approaches
For what concerns the model-based category, instead, [41] and [40] consider transferring all the samples collected
from the source tasks, by estimating the relevance of each datum to solve the target task. They differ from previous
approaches, in which only some samples were selected, but then the discrepancies between tasks were no longer
considered. This approach turns out to be empirically very robust to negative transfer. Another algorithm able to
avoid negative transfer is presented in [14]; the authors show that the sample complexity is significantly reduced in
many cases. A different model-based approach is presented in [18], which introduces a framework to parametrize
a family of related dynamical systems with a low-dimensional set of latent factors by using Gaussian processes [33]
and Indian buffet processes [19]. However, non-linear mechanics could not be captured by their model: a problem
that has been overcome with the study discussed in [21], which substitutes Gaussian processes with Bayesian
neural networks [28]. This choice empowers both the capabilities of the model and increases the computational
efficiency. For what concerns the transfer of policies, the work in [45] formally defines a setting where multiple
teacher agents can provide advice to students, and introduces an algorithm to leverage advices and exploration.
The authors are also able to quantify the negative transfer.

2.3. Discussion

Transferring knowledge is something that is embedded in every intuitive concept of intelligence; humans, indeed,
learn most of the tasks by looking at how others solve them. For instance, when someone is learning to drive a car,
he/she already knows a lot of useful information that he/she has collected over time. This is because he/she
has already spent a lot of time in a car with someone else driving, and he/she has prior knowledge of what
happens by pressing the different pedals, steering, and so on. Moreover, he/she also has a good understanding
of the physics of the world: in the end, what he/she has to learn are very few things. Being able to transfer
knowledge between tasks is an important problem for reinforcement learning agents because it can effectively
increase performances. Despite the success of recent work, the problem is still far from being solved: humans are
able to do that very quickly, especially for similar tasks. Moreover, they are able to perform all the chain of the
transfer process effectively, sometimes without even reasoning about the phenomena: they can select relevant
source tasks, understand how they relate to the target, and finally transfer the knowledge needed to behave well
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Transfer learning for reinforcement learning
Paper P R All Knowledge Metric M-free M-based

Tirinzoni et al. [2018] [39] X X V Regret X
Wang et al. [2018]2[42] X X Q Regret X

Laroche [2017] [25] X Samples Regret X
Ammar [2015] [6] X X Samples Regret X
Li et al. [2018][27] X X Policy Regret X

Azar et al. [2013][8] X X Policy Regret X
Abel et al. [2018][3] X V/Q Jumpstart/Regret X

Mahmud et al [2013][29] X X Policy Regret X
Teh et al. [2017][37] X X Shared Policy Regret X

Barreto et al. [2019][9] X Policy/V Jumpstart X
Yin et al. [2017] [44] X X Samples Regret X

Devin et al. [2016] [17] X X Policy Jumpstart X
Ammar et al. [2015] [4] X Samples Regret X
Taylor et al. [2008] [35] X Samples Regret X
Ammar et al. [2015] [5] X Policy Jumpstart/Regret X

Konidaris et al. [2012] [22] X Policy/Value Regret X
Tirinzoni et al. [2018] [41] X X Samples Regret X
Tirinzoni et al. [2019 [40] X X Samples Regret X
Brunskill et al. [2013] [14] X X Samples Regret X

Doshi-Velez et al. [2013] [18] X Samples Regret X
Killian et al. [2017] [21] X Samples Regret X
Zhan et al. [2016] [45] Policy Regret X

Table 1: Table summarizing the recent works mentioned in this document on the transfer learning in reinforcement
learning settings. The dimensions used to categorize the algorithms are the allowed differences between the
tasks (P for the transition matrix, R for the reward, All when everything can change), the available knowledge
(Knowledge), the metric that has been used to evaluate the algorithms (Metric), and whether the approach is
model-free (M-free) or model-based (M-based).

in a new task.
The variety of possible settings, which can create some confusion in the beginning, is a sign that many roads

are still open for future research. For instance, although recently some algorithms are robust w.r.t. negative
transfer, it is still not clear how is it possible to select the tasks a priori. Indeed, commonly in the literature the
algorithms are showed to not perform worse than the case where no task is available: an important improvement
direction is to understand a priori if the tasks are useful. This, for instance, would help a lot in selecting a proper
algorithm for a given problem.
Moreover, providing algorithms that are able to carry out tasks transferring knowledge and requiring lower
sample complexity is still possible in many settings. In many cases, a lower bound is not even present. Having
lower bounds and algorithms that match them is an important contribution since it is useful both for worst-case
efficiency reasons and for measuring progress in the research area.
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