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Introduction to the problem: what we study?

• We analyze multi-agent environments with mixed cooperative-competitive 
nature.

• Practical applications: 
• Recreative applications (e.g. contract Bridge).
• Security.
• Car racing. 
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Introduction to the problem: how we study it?

• Adopt an Algorithmic Game Theory approach.
• Mathematical formulation of the games and of the objectives: equilibria.
• Start by analyzing solutions proposed for two-player games with perfect recall.
• Nash Equilibrium: pair of strategies such that no player benefits from deviating
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Solution of TPZSGs: Linear Programming
• Straightforward formulation: two-players  zero-sum game as a maxmin problem. 
• Example: 

• LP needs the normal form representation of the game, that has a size that grows
exponentially with the number of decision nodes

7



Introduction to the problem: state of the art

Two-player
Zero-sum

games

Linear 
Programming Abstractions

8



Abstractions

• When considering large games, it can be useful to use an abstract (e.g. with 
lower complexity) version of the game.

• It is possible to build abstractions with three different approaches: 
• Information abstraction: some information sets of the original game are 

made indistinguishable in the abstract game.
• Action abstraction: some actions in the original game are grouped in the 

abstract game, resulting in a smaller number of actions.
• Simulation-based abstraction:  the abstract version of the game is built 

starting from collected experiences. 
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Solution of TPZSGs: CFR

• (Zinkevich et al., 2008).
• Introduction of the concept of regret.
• CFR is an iterative algorithm that applies a regret minimizing scheme called

Regret Matching locally at each information set.
• Average strategies converge to NE in a two-player zero-sum game with perfect

recall, with a fast convergence rate (𝜖𝜖 ∼ 𝑂𝑂( 1
√𝑇𝑇

)).

• Downsides:
• It requires a full tree traversal at each iteration.
• It requires to update regrets at each information set. 
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Solution of TPZSGs: Deep-CFR

• (Brown et al., 2018).
• Reduces the complexity of tabular CFR by leveraging deep learning techniques.
• To avoid complete tree traversals, uses Monte Carlo sampling (also done by 

MCCFR).
• Uses two different neural networks for the players: 

• One used to simulate the behavior of tabular CFR (actions are chosen by 
regret matching on the output of this network).

• The second used to keep track of the average strategy, the one that converges
to the NE.

• Deep-CFR, with high probability, maintains the guarantees of CFR of converging
to a NE. 
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Solution of TPZSGs: Fictitious Play

• (Brown, 1951).
• At each iteration each player plays optimally (in best response) against the 

average strategy played by the opponent.
• In two-player zero-sum games with perfect recall, this learning dynamic average

strategies are proved to converge to a NE, with slow learning rate (𝜖𝜖 ∼ O(𝑇𝑇
− 1

|𝑆𝑆𝑖𝑖|)).
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Solution of TPZSGs: Neural Fictitious Self Play

• (Heinrich and Silver, 2016).
• Combine FP with deep learning.
• Use two neural networks:

• One that simulates the BR computation.
• One that simulates the average strategy computation.

• Experiences are stored in two different buffers, one used for the DQN (replay 
buffer) and one used for the average strategy network (reservoir buffer).

• Average strategies converge to approximate NE in self-play. 
• Maintains the convergence rate of FP.
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Considering multiple agents

• When the environment considered is multi-agent, additional complexity is added
to the study of the problem. 

• One successful solution is Pluribus (Brown and Sandholm, 2019), but the 
approach adopted is an heuristic one.

• Introducing mixed cooperative competitive nature: Adversarial Team Games. 
• Considering ATGs brings several complications w.r.t. the two-players case: 

• Inexpressivity of decentralized behavioral strategies
• In imperfect information games, team is an imperfect-recall player

• For ATGs coordination of strategies becomes fundamental, and the NE doesn’t
represent a ‘’good’’ solution concept for the team. Hence the TMEcor is
introduced.
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Solution of ATGs: Hybrid Column Generation

• (Celli and Gatti, 2017).
• Exploits an hybrid representation of the game in which the opponent strategy 

and the team strategy are represented in different forms. 
• Works by iteratively solving three Integer Linear Programs.
• Computes the TMEcor.
• The adoption of ILPs (NP-hard) brings high computational complexity and low 

scalability. 
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Solution of ATGs: Fictitious Team Play

• (Farina et al., 2018).
• Adaptation of Fictitious Play to the case of Adversarial Team Games. 
• Adopts an auxiliary representation of the game tree obtained by fixing the 

strategy of one of the team players at the root of the tree.
• Works by iteratively solving two Mixed Integer Linear Programs defined in the 

auxiliary game 
• Converges to the TMEcor.
• Adoption of MILPs (NP-hard) causes high computational complexity and low 

scalability.
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Trajectory sampling (1)
• Perfect-recall refinement: given a generic game, obtain the equivalent

formulation of the game in which player 𝒯𝒯 (team) has perfect recall. 
• Example (coordination game):
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Trajectory sampling (3)
• Running example (coordination game):
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• t1: None
• t2: 1 
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• t1: 0
• t2: 0
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Trajectory sampling (3)
• Running example (coordination game):
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• t1: 0
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Average strategy computation (1)

• Strategy representation: 
• Problem: the space of joint strategies grows exponentially with the number

of team players (high spatial complexity).
• Solution: compute average strategies in a decentralized manner.

• Expressiveness of strategy space:  
• Problem: recall that decentralized behavioral policies do not have enough

expressiveness to capture correlation among agents.
• Solution: employ a signaling scheme to extend the expressive power of the 

set of policies. 
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Games considered

• For simplicity focus on multi-stage games.
• Coordination games: variations of the game used as examples during the 

presentation: 
• Various payoffs.
• Various lengths of the game tree:

• Goofspiel: 
• Various ranks (number of cards in each suit).
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Notation

• We will use both original versions of the games and perfect recall refinements. 
• For clarity we will denote the perfect recall refinements of the games with the 

prefix i.
• Also the algorithms that run on the perfect recall refinements (e.g. for trajectory

sampling will be denoted with the prefix i). 
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Algorithms tested

• We tested different state-of-the-art RL frameworks:
• MADDPG, (Lowe et al., 2017),
• SIC-MADDPG, (Chen et al., 2019),
• QMIX, (Rashid et al., 2018).

• In order to test SIMS, we test two different algorithms for traectory sampling: 
• i-NFSP,
• i-QMIX.
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Test 1: Goodness of strategy computation (1)
• Coordination game: 
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Test 1: Goodness of strategy computation (2)
• Goofspiel: 
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Test 2: Comparison with SOTA frameworks (1)
• Coordination game horizon 2: 
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Test 2: Comparison with SOTA frameworks (2)
• Coordination game horizon 4: 
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Future work

• Study different possibilities for trajectory sampling (e.g. Deep-CFR).
• Analyze the case of general Adversarial Team Games. 
• Investigate what happens in cases when the asymmetry of information between 

team members increases.
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