Research Project Proposal: A Non-Cooperative approach in Configurable Markov Decision Processes

Alessandro Concetti alessandro.concetti@mail.polimi.it CSE Track

A Non-Cooperative approach in Configurable Markov Decision Processes

Prof. Marcello Restelli Alberto Metelli

Giorgia Ramponi

Alessandro Concetti

- Preliminaries
- Motivation
- State of the art
- Research plan

Outline

30-35 minutes

Preliminaries

- Reinforcement Learning
- Markov Decision Processes (MDPs)
- Configurable Markov Decision Processes (Conf-MDPs)

Reinforcement learning (RL)

Markov Decision Processes (MDPs)

Formally an MDP is a tuple (*S*, *A*, *P*, *R*, γ , μ), where:

- *S* is the set of states
- A is the set of actions
- $P(s' \mid s, a)$ is the transition model, i.e. the probability distribution over the next state, starting from state *s* and performing action *a*
- R(s,a) is the immediate reward, given the current state s and the performed action a
- *y* is the discount factor
- $\mu(s)$ is the probability distribution over the initial state

Let's define a **policy** as a probability distribution $\pi(a|s)$ over A given the current state s.

Goal

The goal is to find the optimal policy, i.e the policy that maximizes the expected future reward.

 $J^{\pi} = E\left[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi\right]$

Environmental parameters

In many real-world problems, there is the possibility to configure some environmental parameters.

Configurable Markov Decision Processes (Conf-MDPs)

Formally a Conf-MDP is a tuple (*S*, *A*, *R*, γ , μ , \mathcal{P} , Π), where:

- (S, A, R, γ, μ) is the classical MDP without the transition model P
- \mathcal{P} is the set of transition models
- Π the set of policies

The goal is to find the optimal model-policy pair $(P, \pi) \in \mathcal{P} \times \Pi$.

Configurable Markov Decision Processes (Conf-MDPs)

What if the supervisor and the agent were no longer cooperative?

- Preliminaries
- Motivation
- State of the art
- Research plan

Outline

Successes of non-cooperative models in Machine Learning

Real faces

Generator

Real-world applications of Non-Cooperative Conf-MDPs

Supermarket

Real-world applications of Non-Cooperative Conf-MDPs

E-commerce

Real-world applications of Non-Cooperative Conf-MDPs

Design of road networks

- Preliminaries
- Motivation
- State of the art
- Research plan

Outline

Multi-Agent Learning

Multi-Agent approach

Inverse Reinforcement Learning

Configurable Markov Decision Processes

Alberto Maria Metelli 1* Mirco Mutti 1* Marcello Restelli 1

Reinforcement Learning in Configurable Continuous Environments

Alberto Maria Metelli¹ Emanuele Ghelfi¹ Marcello Restelli¹

Policy Space Identification in Configurable Environments

Alberto Maria Metelli, Guglielmo Manneschi, Marcello Restelli

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Piazza Leonardo da Vinci, 32, 20133, Milano, Italy albertomaria.metelli@polimi.it, guglielmo.manneschi@mail.polimi.it, marcello.restelli@polimi.it

Conf-MDP

Configurable Markov Decision Processes

Alberto Maria Metelli 1* Mirco Mutti 1* Marcello Restelli 1

(Jun 2018)

- Theoretical formalization of the novel framework
- Safe Model-Policy Iteration (SMPI)

• Applicable in **finite** and **completely known** environments

Conf-MDP (II)

Reinforcement Learning in Configurable Continuous Environments

Alberto Maria Metelli¹ Emanuele Ghelfi¹ Marcello Restelli¹

- New learning algorithm: *Relative Entropy Model-Policy Search* (REMPS)
- Two phases:
 - Optimization
 - Projection
- Applicable to **unknown** and **continuous** environments

(Jun 2019)

Conf-MDP (III)

Policy Space Identification in Configurable Environments

Alberto Maria Metelli, Guglielmo Manneschi, Marcello Restelli

Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano Piazza Leonardo da Vinci, 32, 20133, Milano, Italy albertomaria.metelli@polimi.it, guglielmo.manneschi@mail.polimi.it, marcello.restelli@polimi.it

(Sep 2019)

- non-controllable ones.

• The Conf-MDP is used to simplify the identification of the policy of an agent.

Configuring the environment is useful to distinguish useless parameters from

State of the art

Multi-Agent Learning

Multi-Agent approach

Inverse Reinforcement Learning

Multi-Agent Deep Reinforcement Learning (MADRL)

> Deep Learning (DL)

Learning in Multiagent environments

- Coalition formation
- Partially observable environments
- Non-stationary environments

• Finding the optimal policy is not as obvious as the single agent case

The **configurator** models the agent's behavior recovering its reward function

• More difficult if it has partial information

Configuration

MAL in Conf-MDP

Environment

- The **agent** could follow possible strategies:
 - 1. Ignore environmental changes
 - 2. Forget previous configurations

- The **agent** could follow possible strategies:
 - 1. Ignore environmental changes
 - 2. Forget previous configurations
 - 3. Awareness of the configurator

- The **agent** could follow possible strategies:
 - 1. Ignore environmental changes
 - 2. Forget previous configurations
 - 3. Awareness of the configurator
 - 4. Possible coalition formation

State of the art

Multi-Agent Learning

Multi-Agent approach

Inverse Reinforcement Learning

The goal of IRL is to recover the unknown reward function from the expert's demonstrations.
Why should we use IRL?

- When we want to know what are the reasons that induce the agent to choose some behaviors
- When the reward function is hard to design

Exemple of IRL

- A set of expert demonstrations D is given.
- function $R_{F}(s,a)$ of the expert
 - This means that we want similar state-action visitation frequency: $\mu_F \simeq \mu_F$
 - \rightarrow Evaluate μ_{F} from D
 - \rightarrow Initialize randomly the reward R
 - → Repeat until convergence

 - Evaluate μ of the current policy π
 - Update R based on the comparison between μ and μ_{F}

• **Goal:** find R(s,a) that is equivalent, in term of performance, to the *unknown* reward

• Find the current policy π induced by R with RL techniques

Inverse Reinforcement Learning (\mathbf{IRL})

IRL is an **ill-posed** problem

- maximize the entropy

Two categories:

- Model-based
- Model-free
 - Interactive model-free
 - Batch model-free

• maximize the margin between the optimal policy and the others

IRL in Conf-MDP

State of the art

Multi-Agent Learning

Multi-Agent approach

Game Theory

Usage of IRL

Inverse Reinforcement Learning

Game Theory (GT)

Game theory is the study of mathematical models of strategic interaction among rational decision-makers.

Stackelberg Games

Stackelberg Games

Stackelberg equilibrium

The leader (player 1) and the follower (player 2) aim to solve these optimization problems:

$$\min_{x_1 \in X_1} \left\{ f_1(x_1, x_2) \middle| x_2 \in \arg\min_{y \in X_2} f_2(x_1, y) \right\}$$
$$\min_{x_2 \in X_2} f_2(x_1, x_2)$$

$$\sup_{x_2 \in \mathcal{R}(x_1^*)} f_1(x_1^*, x_2) \le \sup_{x_2 \in \mathcal{R}(x_1)} f_1(x_1, x_2), \ \forall x_1 \in X_1,$$

A strategy x1* is called a **Stackelberg equilibrium strategy** for the leader if

where $\mathcal{R}(x_1) = \{y \in X_2 | f_2(x_1, y) \le f_2(x_1, x_2), \forall x_2 \in X_2\}$ is the rational reaction set of x2.

Convergence of Learning Dynamics in Stackelberg Games

Tanner Fiez Department of Electrical and Computer Engineering University of Washington

Benjamin Chasnov Department of Electrical and Computer Engineering University of Washington

Lillian J. Ratliff Department of Electrical and Computer Engineering University of Washington

- equilibria
- Stackelberg equilibrium

FIEZT@UW.EDU

BCHASNOV@UW.EDU

RATLIFFL@UW.EDU

• Investigate the relationship between Nash and Stackelberg

• Provide a learning rule for the leader that provably converges to a

Stackelberg Games in Conf-MDP

- Preliminaries
- Motivation
- State of the art
- Research plan

Outline

Non-cooperative Conf-MDP

Possible assumptions

- The configurator is omniscient
- The configurator has partial information

• The agent is unaware • The agent is aware

- Single agent
- Multiple agents

Possible assumptions

- The configurator is omniscient
- The configurator has partial information

• The agent is unaware • The agent is aware

Project plan

Thank you for your attention!

Alessandro Concetti