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Preliminaries

• Reinforcement Learning

• Markov Decision Processes (MDPs)

• Configurable Markov Decision Processes (Conf-MDPs)
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Reinforcement learning (RL)
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Markov Decision Processes (MDPs)

Formally an MDP is a tuple (S, A, P, R, γ, μ), where:
• S is the set of states
• A is the set of actions
• P(s' | s,a) is the transition model, i.e. the probability distribution over the next state, 

starting from state s and performing action a
• R(s,a) is the immediate reward, given the current state s and the performed action a
•  γ is the discount factor
•  μ(s) is the probability distribution over the initial state

Let’s define a policy as a probability distribution π(a|s) over A given the current state s.
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Goal

The goal is to find the optimal policy, i.e the policy that maximizes the expected future 
reward.
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Environmental parameters

In many real-world problems, there is the possibility to configure some environmental 
parameters. 
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Configurable Markov Decision Processes 
(Conf-MDPs)

Formally a Conf-MDP is a tuple (S, A, R, γ, μ, 𝓟, Π ), where:

• (S, A, R, γ, μ) is the classical MDP without the transition model P 

• 𝓟  is the set of transition models 

• Π the set of policies

The goal is to find the optimal model-policy pair (P, π) ∈ 𝓟  x Π.
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Configurable Markov Decision Processes 
(Conf-MDPs)
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What if the 
supervisor and the 
agent were no 
longer cooperative?
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Non-cooperative scenario
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Non-cooperative scenario

13



Non-cooperative scenario
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Non-cooperative scenario
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Successes of non-cooperative models in 
Machine Learning
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Real-world applications of 
Non-Cooperative Conf-MDPs
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Real-world applications of 
Non-Cooperative Conf-MDPs
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E-commerce



Real-world applications of 
Non-Cooperative Conf-MDPs
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Design of road networks
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State of the art
Conf-MDPs

Multi-Agent approach

Usage of IRL

Emerging of strategic behaviorProject 
Proposal

Multi-Agent 
Learning Game Theory

Inverse Reinforcement Learning 
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Conf-MDP
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Conf-MDP (I)

• Theoretical formalization of the novel framework

• Safe Model-Policy Iteration (SMPI)

• Applicable in finite and completely known environments
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(Jun 2018)



Conf-MDP (II)

• New learning algorithm: Relative Entropy Model-Policy Search (REMPS)

• Two phases:

• Optimization

• Projection

• Applicable to unknown and continuous environments

25

(Jun 2019)



Conf-MDP (III)

• The Conf-MDP is used to simplify the identification of the policy of an agent.

• Configuring the environment is useful to distinguish useless parameters from 
non-controllable ones.
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(Sep 2019)
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Multi-Agent Learning (MAL)

MDP Stochastic 
Games
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Learning in Multiagent environments

● Finding the optimal policy is not as obvious as the single agent case

● Coalition formation

● Partially observable environments

● Non-stationary environments
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MAL in Conf-MDP
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MAL in Conf-MDP

The configurator models the agent’s 

behavior recovering its reward function    

31

• More difficult if it has partial 

information



MAL in Conf-MDP

• The agent could follow possible 
strategies:
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1. Ignore environmental changes

2.  Forget previous configurations



MAL in Conf-MDP
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1. Ignore environmental changes

2.  Forget previous configurations

3.  Awareness of the configurator

• The agent could follow possible 
strategies:



MAL in Conf-MDP
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1. Ignore environmental changes

2.  Forget previous configurations

3.  Awareness of the configurator

4.  Possible coalition formation

• The agent could follow possible 
strategies:
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Inverse Reinforcement Learning
(IRL)

RLReward Behavior

IRL RewardBehavior

 The goal of IRL is to recover the unknown reward function from the expert's 
demonstrations.
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Why should we use IRL?

• When we want to know what are the reasons that induce the agent to 
choose some behaviors 

• When the reward function is hard to design
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Exemple of IRL
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➔ Evaluate μE from D
➔ Initialize randomly the reward R
➔ Repeat until convergence
◆ Find the current policy π induced by R with RL techniques
◆ Evaluate μ of the current policy π
◆ Update R based on the comparison between μ and μE    

● A set of expert demonstrations D is given.

● Goal: find R(s,a) that is equivalent, in term of performance, to the unknown reward 

function RE(s,a) of the expert

○ This means that we want similar state-action visitation frequency: μE ≃ μ



Inverse Reinforcement Learning
(IRL)

IRL is an ill-posed problem
● maximize the entropy
● maximize the margin between the optimal policy and the others

Two categories:
● Model-based
● Model-free

○ Interactive model-free
○ Batch model-free
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IRL in Conf-MDP
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Game Theory (GT)

Game theory is the study of mathematical models of strategic interaction among rational 
decision-makers.

Stackelberg Games
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Stackelberg Games
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Stackelberg equilibrium

The leader (player 1) and the follower (player 2) aim to solve these optimization problems:

A strategy x1* is called a Stackelberg equilibrium strategy for the leader if

where is the rational reaction set of x2.
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Stackelberg Games

● Investigate the relationship between Nash and Stackelberg 
equilibria

● Provide a learning rule for the leader that provably converges to a 
Stackelberg equilibrium
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Stackelberg Games in Conf-MDP

Configurator Agent

The configurator chooses a 
new configuration

The agent optimizes its policy 
in the new configuration
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Non-cooperative Conf-MDP
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Possible assumptions

Agent’s awarenessIRL process Possible multiple agents

● The configurator is omniscient
● The configurator has partial 

information

● The agent is unaware 
● The agent is aware

● Single agent
● Multiple agents
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Thank you for your attention!

Alessandro Concetti
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