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Markov Decision Process

A Markov Decision Process (MDP) [Puterman, 2014] is a
mathematical framework for modelling sequential decision

state

making problems.
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Configurable Environments
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Configurable Markov Decision Processes

A Configurable Markov Decision Process (Conf-MDP) [Metelli
et al., 2018] is an extension of a classic MDP in order to deal with
configurable environments.
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Configurable Markov Decision Processes

We can think to a Conf-MDP as a system with two entities:

Learning agent
Configurator

From a abstract point of view, they act in a fully-cooperative
scenario.
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Configurable Markov Decision Processes

What if the agent and the configurator are no longer
cooperative?
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Possible scenarios

Supermarket
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Non-Cooperative Configurable Markov Decision Processes

A Non-Cooperative Configurable Markov Decision Process
(NConf-MDP) is an extension of Conf-MDP in order to model a
non-cooperative interaction between the agent and the
configurator.
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Markov Decision Processes

Formally a finite-horizon MDP is a tuple (S, A,p,r, i, H), where:
. § is the set of states

. A is the set of actions

. p(s'[s, a) is the transition model

. r(s) is the reward function

. 1(s) is the probability distribution over the initial state

. H is the time horizon

POLITECNICO MILANO 1863



Policy

The agent selects actions following a policy.

Deterministic policy m = (71,72, ..., 7g) in the finite-horizon

setting is a sequence of decision rules 7, : S — A.

> Agent ||
state reward action
St R’ Al
. Rt+l (
P Environment ]4—
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Solving a MDP

Solving a MDP means finding the optimal policy, i.e. the policy
that maximizes the agent performance.

7 = argmax V"
mell

H

> ’I“h:| is the expected agent’s return.
h=1
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Optimal Value Functions

+ State value function V7 : S — R

« Represents the value of a state in a time instant h under the optimal
policy.

- State-action value function Q7 : S x A — R

« Represents the value of a state-action pair in a time instant A under the
optimal policy.
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State Value Function

The state value function can be defined by this formula, named
Bellman optimality equation:

Vir(s) =r(s) + max {Zp(sﬂs, a)V;:+1(S/):|

acA

POLITECNICO MILANO 1863



State-action Value Function

The state-action value function can be derived starting from
the value function:

Qh(s,a) = 7(s) + ) p(s']s,a) Vi (5')
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Backward Value Iteration

Algorithm 3 Backward Value Iteration

1: Vy(s)=r(s) Vse8S
2: forh=H—-1,H—-2...1do
3 Vi(s)=r(s)+ gleajc[z p(s']s, )V (s))]  Vs€S
4: end for s
Compute Q-function R Compute the greedy
starting from V-function policy

7h(8) < argmax,[Qn(s,a)] Vh € [H]
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Configurable Markov Decision Processes

Formally, a finite-horizon Conf-MDP is a tuple (S, A, P, r,u, H),
where:
(S, A, r, n, H) is a finite-horizon MDP without the transition
model

P is the set of transition models

Obijective: Find the model-policy pair (p,7) that maximize the

agent performance.

POLITECNICO MILANO 1863



Non-Cooperative Configurable Markov Decision Processes

Formally, a NConf-MDP is a tuple (S, A, P, 7o, ¢, it, H), where:

(S, A, P, u, H) is a finite-horizon Conf-MDP without the
reward function
ro(S) is the reward function of the agent (opponent)

r¢(s) is the reward function of the configurator

Obijective: Find the model-policy pair (p,7) that maximize the

configurator performance, knowing that 7 is optimal in p.
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Non-Cooperative Configurable Markov Decision Processes

Configurator selects Agent learns the
pi €P > optimal policy
T

Configurator observes
agent’s trajectories
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Non-Cooperative Configurable Markov Decision Problem

From a game-theoretic point of view, the interaction between the
agent and the configuration can be modelled using Stackelberg
Games.
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Stackelberg Games

The simplest formulation of Stackelberg game is characterized

by two players, a leader and a follower, that interact in a
hierarchical structure:

1. The leader plays its strategy first.
2. The follower plays its best response
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Stackelberg Games

The leader aims to solve this optimization problem:
B
max{ry (a1, BR(a1))}

where BR(a:) € arg I;laxw(al,a) :
ac Ao

While the follower aims to solve this optimization problem:

max 7rolai,a9).
by 2( 1, 2)
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Non-Cooperative Configurable Markov Decision Processes

Configurator selects Agent learns the
pi €P > optimal policy
T

Configurator observes
agent’s trajectories
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Non-Cooperative Configurable Markov Decision Processes

Configurator selects
p; € P

A

Configurator observes its
performance
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Non-Cooperative Configurable Markov Decision Processes

If we ignore the structure of the problem we could cast the
problem of learning the best configuration to a Multi-armed
Bandit.
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Upper Confidence Bound

Multi-armed Bandits are a special class of MDPs with only one state.

Upper Confidence Bound (UCB) solve MAB problem using the
"Optimism in Face of Uncertainty” (OFU) principle.

Upper Bound [

Confidence |
Interval

T

Lower Bound
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Performance of MAB algorithms

We can measure the performance of a generic MAB algorithm
using the regret:

- K _
A=E max V, — V,,
acA
L k: I y\
Value of the Value of the action
best action performed in

episode k
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Non-Cooperative Configurable Markov Decision Processes

Configurator selects Agent learns the
pi €P > optimal policy
T

Configurator observes
agent’s trajectories
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Non-Cooperative Configurable Markov Decision Processes

We propose two algorithms for solving NConf-MDPs:

» Action-feedback Optimistic Configuration Learning (AfOCL)
« Reward-feedback Optimistic Configuration Learning (RfOCL)
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Non-Cooperative Configurable Markov Decision Processes

We study two different types of feedback:

Action-feedback Reward-feedback
Configurator selects . Agetri]:r:glarr;ﬁéhe Configurator selects . Agetr)t Ielarn? the
pi €P p 71_ip Yy piEP op |m:;1ripo icy

A y

<81,CL1...> < <81,a1,F1...>:
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Action-feedback Optimistic Configuration Learning

Trajectories are composed by states and actions only...

<81, ai,s2,42,...,SH—1,AH—1, 8H>

where ap = Wi,h(sh) :

Assumption 1:

The agent’s policy is deterministic and fixed.

... but the transition model is stochastic!
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Action-feedback Optimistic Configuration Learning

AfOCL is based on the OFU principle.

Every episode k € | K] the configurator
computes an optimistic estimate V; of its
expected return for each configuration: € [M].

|

Then, it selects i € arg max V}’ .
€[ M]
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Action-feedback Optimistic Configuration Learning

How to compute the optimistic expected return Vi ?

We maintain a set of possible policies in each
configuration.

|

We compute Vi using the optimistic policy.
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Action-feedback Optimistic Configuration Learning

How to compute the optimistic expected return Vi ?

From a practical point of view...

Configuration i |
z
Ap,n(s) S
At the beginning of \
episode k me step h
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Action-feedback Optimistic Configuration Learning

How to compute the optimistic expected return Vi ?

From a practical point of view...

Configuration i . ( S)} If we have observed

the agent

/ \\ A otherwise

At the beginning of _
episode k Time step h
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Action-feedback Optimistic Configuration Learning

Algorithm 6 Optimistic Value Iteration
1 Nki,H(s) =0 VseS
2: forh=H—-1,H—-2,...,1do
3: Vlg,h(s) = re(s) + ma‘XaEAfc,h(s) ZS’ES p’i(sl|37 a)VI:,h+1(8,)
4
5)

: end for
: return Expected return ) s V! (s)u(s)
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Action-feedback Optimistic Configuration Learning

Algorithm 7 Action-feedback Optimistic Configuration Learning (AfOCL).

1: Input: S, A, H, P ={p1,...,pm}

2: Initialize Aj ,(s) = Afor all s € S, h € [H], and i € [M]
3: for episodes k =1,2,..., K do

4:  Compute 17,; for all ¢ € [M]
)
6
7

Play pr, with I, € argmax;c sz
Observe (Sk,l, Ak.1y--+3Sk,H-1,0k H—-1, Sk,H)
Compute the plausible actions for all s € S and h € [H]:

2 {ak,h} ifg= Ik and s = Sk,h
k+1,h(5) =

i.n(s)  otherwise

8: end for
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Action-feedback Optimistic Configuration Learning

Regret guarantees

Under Assumption 1, the expected regret of AfOCL at every
episode K is bounded by:

E[Regret(K)] < MH?3S?.

The upper bound does not depend on the number of episodes K!
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Action-feedback Optimistic Configuration Learning

There is no way to transfer information across
different configurations!
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Reward-feedback Optimistic Configuration Learning

Trajectories are composed by states, actions and a noisy
version of rewards...

(81,&1,7“1, ce SH—1,GH—1,7“H—1,8H>

Assumption 2:

The MDP induced by the best response policy must be ergotic.
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Reward-feedback Optimistic Configuration Learning

RfOCL is able to transfer knowledge across different
configurations using an estimate of the reward function of the
agent.
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Reward-feedback Optimistic Configuration Learning

RfOCL and AfOCL share the same structure.

Every episode k € | K] the configurator
computes an optimistic estimate V; of its
expected return for each configuration: € [M].

|

Then, it selects i € arg max V}’ .
€[ M]
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Reward-feedback Optimistic Configuration Learning

How to compute the optimistic expected return Vi ?

We still maintain a set of plausible actions:

If we have observed

i / {7'('2' (S) } the agent
k.h (s) Ny
? otherwise

POLITECNICO MILANO 1863



Reward-feedback Optimistic Configuration Learning

How to compute the optimistic expected return Vi ?

1. We compute a confidence interval Ri(s) = [r, x(5),70,x(s)] Of

the agent’s reward function using Hoeffding’s inequality:

R log(SHE3)
Tok(s) £ \/ max{Nj(s), 1}
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Reward-feedback Optimistic Configuration Learning

How to compute the optimistic expected return Vi ?

2. Compute the confidence interval on the Q functions of the

agent induced by R (s) in each configurations.

1

;:c,h(sv CL) — [QZ L h(Sa a’)?@o,k,h(87 a)]

YA

e AN

Value iteration with 7, () Value iteration with 7 ()

POLITECNICO MILANO 1863



Reward-feedback Optimistic Configuration Learning

How to compute the optimistic expected return Vi ?

3. We discard actions that are "dominated” by other actions

?{:,h(sv a’O) n
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Reward-feedback Optimistic Configuration Learning

How to compute the optimistic expected return Vi ?

3. We discard actions that are "dominated” by other actions

a’'e€ A

T, (s) = { € AT, pn(s,0) 2 max @ (s, a>}
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Reward-feedback Optimistic Configuration Learning

Regret guarantees

Under Assumption 2, the expected regret of RfFOCL at every
episode K is bounded by:

E[Regret(K)] <

Ap T
3

T

Constant Maximum
dependingon S suboptimality
and H gap

The upper bound does not depend on the number of configuration M!
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Experimental Evaluation

What we want to show:

1. AfOCL and RfOCL bring advantages over a MAB
approach (UCB1).

2. RfOCL performs better than AfOCL if Assumption 2
holds.

3. RfOCL is able to scale very well with a high number of

configurations.
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Experimental Evaluation

We compare our algorithms with UCB in three different
domains:

« Configurable Gridworld
« Teacher-Student

 Marketplace
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Experimental Evaluation

Configurable Gridworld
® O o |
Configuration #1 Configuration #2 Configuration #3

« The agent's goal is to reach the terminal state as soon
as possible.

 The configurator’s goal is to keep the agent in the
central cell as long as possible.
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Experimental Evaluation

Configurable Gridworld — Experiment
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Experimental Evaluation

Student-Teacher

G G

Configuration #1 Configuration #2 Configuration #3

 The teacher (configurator) has a list of S exercises
characterized by a different level of difficulty.

« The goal of the teacher is to find the right sequence of
exercises.
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Experimental Evaluation

Student-Teacher

G G

Configuration #1 Configuration #2 Configuration #3

 The student (agent) perceives the level of difficulties of the
exercises in a different way and it can decide to not answer the
ones he find too difficult.

« The goal of the student is the same of the teacher: start solving
most difficult exercises as soon as possible!
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Experimental Evaluation

Student-Teacher - Experiment

Cumulative regret
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Experimental Evaluation

Marketplace

|| w|w| [T w ]
w
W% *
® |~ O ® |~
Configuration #1 Configuration #2 Configuration #3

« The customer’s goal is grab the only product it is interested in and
reach the exit.

* The goal of the supermarket owner is to induce the customer to
buy other products.
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Experimental Evaluation

Marketplace - Experiment
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Conclusions

Solving Non Cooperative Conf-MDPs

A

Performance

v

Use of structure
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Future Research Directions

 Fixed Stochastic policy
« Awareness of the agent

* Inverse Reinforcement Learning
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Reward-feedback Optimistic Configuration Learning

Algorithm 8 Reward-feedback Optimistic Configuration Learning
(RfOCL)
1: Input: S, .A, H,P={p1,...,pm}
2: Initialize A7 ;,(s) = Afor all s € S, h € [H], and i € [M]
3: Initialize 751(s) = 1, r,,(s) = 0, and Nyp(s) = 0 for all s € S and
h € [H]
for episodes 1,2,..., K do
Compute V; for all i € [M]
Play py, with Iy € arg max;eqy Vi
Observe

(8k,1,Tk,1,Qk,1s - - - » Sk, H—1, Tk H—1, @k, H—1, Sk,H» Tk, H)

8:  Compute 70 k+1(8), To k+1(5), and Niy1,4(s) for all s € S and h € [H]
using 7 1 - - - Tx, g as in Equation (5.6)

9:  Compute Qi’kﬂ’h(s,a), a,k_ﬂ,h(s, a) foralls € S,a € A, h €[H]
and i € [M]

10:  Compute the plausible actions for all s € S and h € [H|:

{ak,h} ifi= Ik and s = Sk,h
Akr1n(s) = { ALy(s) i Nia(s) >0
.Z}c 414(8) otherwise

with .chﬂ’h(s) as in Equation (5.7).
11: end for
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Experimental Evaluation

Marketplace
e Number of states: 16
« Number of actions: 4

 Agent’s reward: -1 everywhere and 0.9 where there is the product.

« Configurator’s reward: 0 everywhere and 1 where there is some
products.

« Configurations: M random transition models
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Experimental Evaluation

Student-Teacher — Nconf-MDP

Number of states: 10 (exercises)
 Number of actions: 2 (answer/not answer)
« Agent’s reward: difficulty perceived by the agent

« Configurator’s reward: difficulty perceived by the configurator

« Configurations: M transition models that differ each other by
the way they assign the probabilities to next states when the
agent decides to answer.

POLITECNICO MILANO 1863



Experimental Evaluation

Configurable Gridworld — Nconf-MDP

Number of states: 9

 Number of actions: 4

« Agent’s reward: -1 everywhere

« Configurator’s reward: 0 everywhere and 1 in the central cell

« Configurations: M transition models with different values of p
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Stackelberg Games

Definition 2.3.2 (Stackelberg Equilibrium). In a two-player game with

player 1 as the leader, a strategy ai € A; is called a Stackelberg equilibrium
strateqy for the leader if

min 7i(aj,a2) > min 7ri(aj,a2), Vai € A, (2.18)
a2€BR(ay) a2€BR(ay)

where BR(a1) = {a € As|rs(ay,a) > ry(ay, az),Vas € As}.
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