

M.Sc. in Computer Science and Engineering

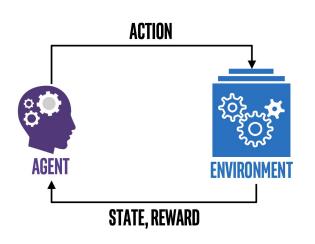
Non-Cooperative Configurable Markov Decision Processes

Alessandro Concetti

Supervisor: Prof. Marcello Restelli

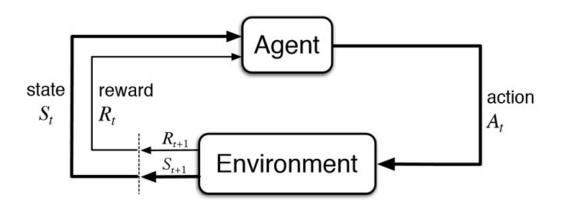
Co-supervisors: Dott. Alberto Metelli, Dott.ssa Giorgia Ramponi

Reinforcement Learning



Markov Decision Process

A **Markov Decision Process (MDP)** [Puterman, 2014] is a mathematical framework for modelling sequential decision making problems.



Configurable Environments

A Configurable Markov Decision Process (Conf-MDP) [Metelli et al., 2018] is an extension of a classic MDP in order to deal with configurable environments.

We can think to a Conf-MDP as a system with two entities:

- Learning agent
- Configurator

From a abstract point of view, they act in a **fully-cooperative** scenario.

What if the agent and the configurator are no longer cooperative?

Possible scenarios

Supermarket

Possible scenarios

Computer Security

A Non-Cooperative Configurable Markov Decision Process (NConf-MDP) is an extension of Conf-MDP in order to model a non-cooperative interaction between the agent and the configurator.

Markov Decision Processes

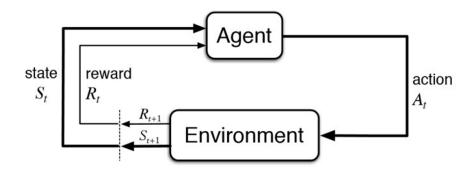
Formally a finite-horizon MDP is a tuple (S, A, p, r, μ, H) , where:

- $\cdot \, \mathcal{S}$ is the set of states
- $\cdot \mathcal{A}$ is the set of actions
- . p(s'|s,a) is the transition model
- $\cdot r(s)$ is the reward function
- $\cdot \mu(s)$ is the probability distribution over the initial state
- $\cdot H$ is the time horizon

Policy

The agent selects actions following a **policy**.

Deterministic policy $\pi = (\pi_1, \pi_2, \dots, \pi_H)$ in the finite-horizon setting is a sequence of decision rules $\pi_h : \mathcal{S} \to \mathcal{A}$.



Solving a MDP

Solving a MDP means finding the **optimal policy**, i.e. the policy that maximizes the agent performance.

$$\pi^* = \operatorname*{argmax}_{\pi \in \Pi} V^{\pi}$$

where
$$V^{\pi} = \mathbb{E}\left[\sum_{h=1}^{H} r_h\right]$$
 is the expected agent's return.

Optimal Value Functions

- State value function $V_h^\star:\mathcal{S} o \mathbb{R}$
 - Represents the value of a state in a time instant h under the optimal policy.
- State-action value function $Q_h^\star:\mathcal{S} imes\mathcal{A} o\mathbb{R}$
 - Represents the value of a state-action pair in a time instant $\,h\,$ under the optimal policy.

State Value Function

The **state value function** can be defined by this formula, named *Bellman optimality equation*:

$$V_h^{\star}(s) = r(s) + \max_{a \in \mathcal{A}} \left[\sum_{s'} p(s'|s, a) V_{h+1}^{\star}(s') \right]$$

$$\left(V_H^{\star}(s) = r(s) \right)$$

State-action Value Function

The **state-action value function** can be derived starting from the value function:

$$Q_h^{\star}(s, a) = r(s) + \sum_{s'} p(s'|s, a) V_{h+1}^{\star}(s')$$

Backward Value Iteration

Algorithm 3 Backward Value Iteration

1:
$$V_H(s) = r(s) \quad \forall s \in \mathcal{S}$$

2: **for**
$$h = H - 1, H - 2 \dots 1$$
 do

3:
$$V_h^{\star}(s) = r(s) + \max_{a \in \mathcal{A}} \left[\sum_{s'} p(s'|s, a) V_{h+1}^{\star}(s') \right] \quad \forall s \in \mathcal{S}$$

4: end for

Compute Q-function starting from V-function

Compute the greedy policy

 $\pi_h(s) \leftarrow \operatorname{argmax}_a[Q_h(s, a)] \quad \forall h \in [H]$

Formally, a **finite-horizon Conf-MDP** is a tuple (S, A, P, r, μ, H) , where:

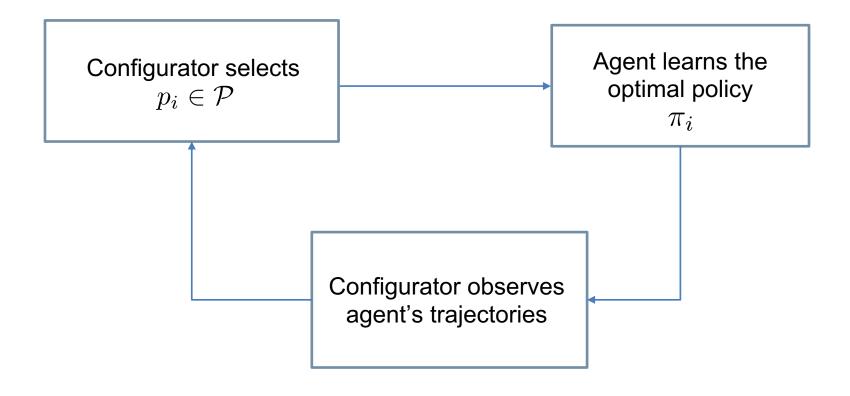
- . $(\mathcal{S},\mathcal{A},r,\mu,H)$ is a finite-horizon MDP without the transition model
- . \mathcal{P} is the set of transition models

Objective: Find the model-policy pair (p,π) that maximize the agent performance.

Formally, a NConf-MDP is a tuple $(S, A, P, r_o, r_c, \mu, H)$, where:

- . $(\mathcal{S},\mathcal{A},\mathcal{P},\mu,H)$ is a finite-horizon Conf-MDP without the reward function
- . $r_o(s)$ is the reward function of the agent (opponent)
- . $r_c(s)$ is the reward function of the configurator

Objective: Find the model-policy pair (p, π) that maximize the configurator performance, knowing that π is optimal in p.



From a game-theoretic point of view, the interaction between the agent and the configuration can be modelled using **Stackelberg Games**.

Stackelberg Games

The simplest formulation of Stackelberg game is characterized by two players, a **leader** and a **follower**, that interact in a hierarchical structure:

- The leader plays its strategy first.
- 2. The follower plays its best response

Stackelberg Games

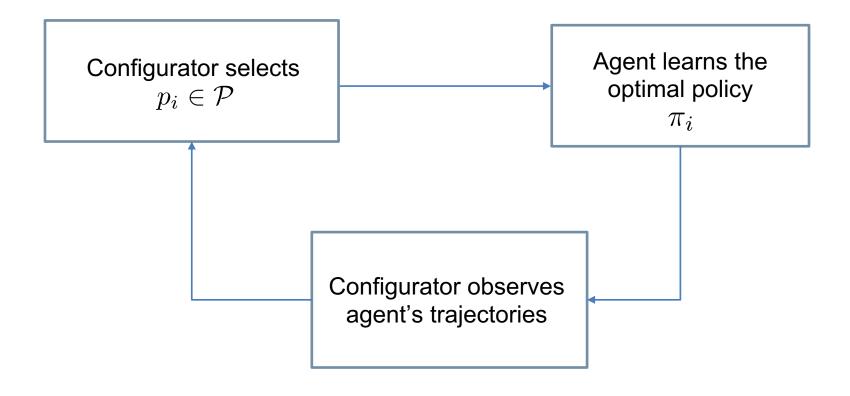
The leader aims to solve this optimization problem:

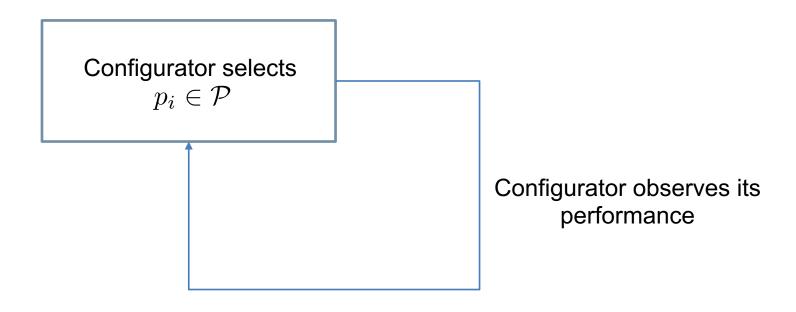
$$\max_{a_1 \in \mathcal{A}} \{ r_1(a_1, BR(a_1)) \}$$

where
$$BR(a_1) \in \operatorname*{arg\,max}_{a \in \mathcal{A}_2} r_2(a_1, a)$$
 .

While the follower aims to solve this optimization problem:

$$\max_{a_2 \in \mathcal{A}_2} r_2(a_1, a_2).$$



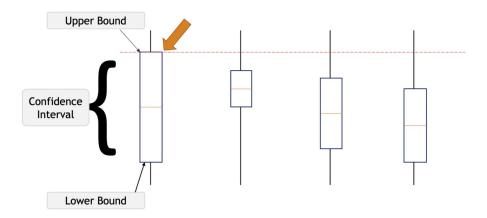


If we ignore the structure of the problem we could cast the problem of learning the best configuration to a **Multi-armed Bandit**.

Upper Confidence Bound

Multi-armed Bandits are a special class of MDPs with only one state.

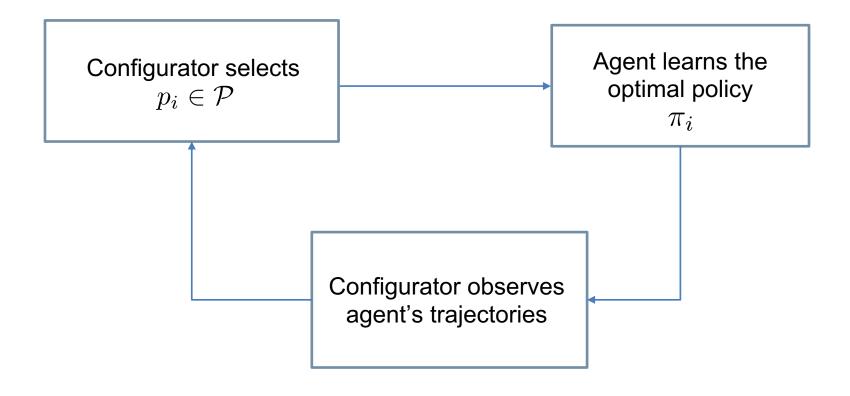
Upper Confidence Bound (UCB) solve MAB problem using the "Optimism in Face of Uncertainty" (OFU) principle.



Performance of MAB algorithms

We can measure the performance of a generic MAB algorithm using the **regret**:

$$\Delta = \mathbb{E}\left[\sum_{k=1}^K \max_{a \in \mathcal{A}} V_a - V_{a_k}\right]$$
 Value of the best action best action performed in episode k



We propose two algorithms for solving NConf-MDPs:

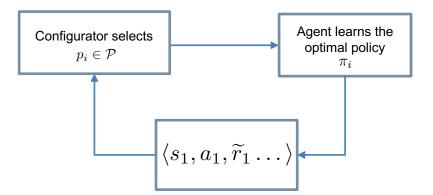
- Action-feedback Optimistic Configuration Learning (AfOCL)
- Reward-feedback Optimistic Configuration Learning (RfOCL)

We study two different types of feedback:

Action-feedback

Agent learns the Configurator selects optimal policy $p_i \in \mathcal{P}$ π_i $\langle s_1, a_1 \dots \rangle$

Reward-feedback



Trajectories are composed by states and actions only...

$$\langle s_1, a_1, s_2, a_2, \dots, s_{H-1}, a_{H-1}, s_H \rangle$$

where $a_h = \pi_{i,h}(s_h)$.

Assumption 1:

The agent's policy is deterministic and fixed.

... but the transition model is stochastic!

AfOCL is based on the **OFU principle**.

Every episode $k \in [K]$ the configurator computes an **optimistic** estimate \widetilde{V}_k^i of its expected return for each configuration $i \in [M]$.

Then, it selects $i \in \underset{i \in [M]}{\arg\max} \, \widetilde{V}_k^i$.

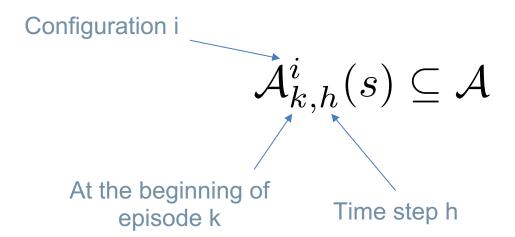
How to compute the optimistic expected return \widetilde{V}_k^i ?

We maintain a set of possible policies in each configuration.

We compute \widetilde{V}_k^i using the optimistic policy.

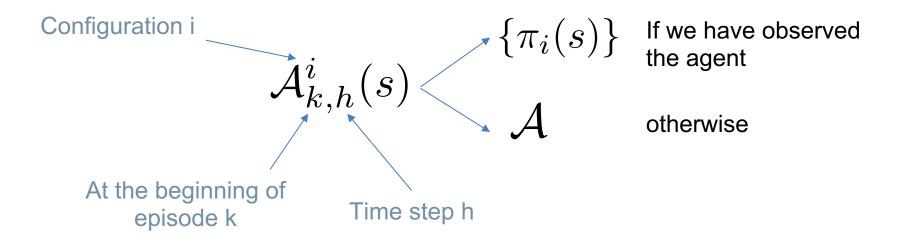
How to compute the optimistic expected return \widetilde{V}_k^i ?

From a practical point of view...



How to compute the optimistic expected return \widetilde{V}_k^i ?

From a practical point of view...



Algorithm 6 Optimistic Value Iteration

1:
$$\widetilde{V}_{k,H}^i(s) = 0 \quad \forall s \in \mathcal{S}$$

2: **for**
$$h = H - 1, H - 2, \dots, 1$$
 do

3:
$$\widetilde{V}_{k,h}^{i}(s) = r_c(s) + \max_{a \in \mathcal{A}_{k,h}^{i}(s)} \sum_{s' \in \mathcal{S}} p_i(s'|s,a) \widetilde{V}_{k,h+1}^{i}(s')$$

4: end for

5: **return** Expected return $\sum_{s \in \mathcal{S}} \widetilde{V}_{k,1}^{i}(s) \mu(s)$

Algorithm 7 Action-feedback Optimistic Configuration Learning (AfOCL).

- 1: **Input:** $S, A, H, P = \{p_1, \dots, p_M\}$
- 2: Initialize $\mathcal{A}_{1,h}^i(s) = \mathcal{A}$ for all $s \in \mathcal{S}, h \in [H], \text{ and } i \in [M]$
- 3: **for** episodes k = 1, 2, ..., K **do**
- 4: Compute \widetilde{V}_k^i for all $i \in [M]$
- 5: Play p_{I_k} with $I_k \in \arg\max_{i \in [M]} V_k^i$
- 6: Observe $(s_{k,1}, a_{k,1}, \dots, s_{k,H-1}, a_{k,H-1}, s_{k,H})$
- 7: Compute the plausible actions for all $s \in \mathcal{S}$ and $h \in [H]$:

$$\mathcal{A}_{k+1,h}^{i}(s) = \begin{cases} \{a_{k,h}\} & \text{if } i = I_k \text{ and } s = s_{k,h} \\ \mathcal{A}_{k,h}^{i}(s) & \text{otherwise} \end{cases}$$

8: end for

Regret guarantees

Under Assumption 1, the expected regret of AfOCL at every episode K is bounded by:

$$\mathbb{E}[Regret(K)] \le MH^3S^2.$$

The upper bound does not depend on the number of episodes K!

There is no way to transfer information across different configurations!

Trajectories are composed by states, actions and a noisy version of rewards...

$$\langle s_1, a_1, \widetilde{r}_1, \dots s_{H-1}, a_{H-1}, \widetilde{r}_{H-1}, s_H \rangle$$

Assumption 2:

The MDP induced by the best response policy must be ergotic.

RfOCL is able to **transfer knowledge** across different configurations using an estimate of the reward function of the agent.

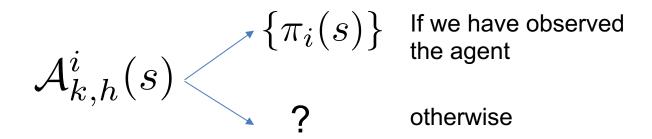
RfOCL and AfOCL share the same structure.

Every episode $k \in [K]$ the configurator computes an **optimistic** estimate \widetilde{V}_k^i of its expected return for each configuration $i \in [M]$.

Then, it selects $i \in \underset{i \in [M]}{\arg\max} \, \widetilde{V}_k^i$.

How to compute the optimistic expected return \widetilde{V}_k^i ?

We still maintain a set of plausible actions:



How to compute the optimistic expected return \widetilde{V}_k^i ?

1. We compute a confidence interval $\mathcal{R}_k(s) = [\underline{r}_{o,k}(s), \overline{r}_{o,k}(s)]$ of the **agent**'s reward function using Hoeffding's inequality:

$$\widehat{r}_{o,k}(s) \pm \sqrt{\frac{\log(SHk^3)}{\max\{N_k(s),1\}}}$$

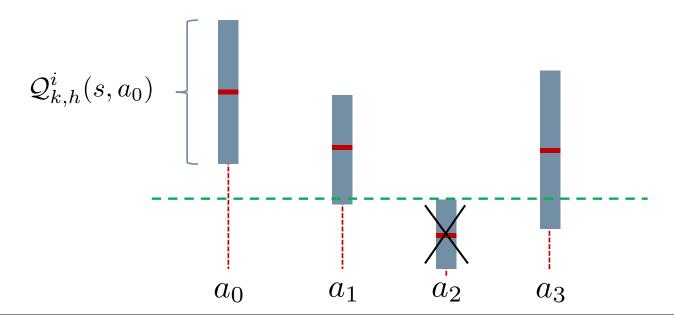
How to compute the optimistic expected return \widetilde{V}_k^i ?

2. Compute the confidence interval on the Q functions of the agent induced by $\mathcal{R}_k(s)$ in each configurations.

$$\mathcal{Q}^i_{k,h}(s,a) = [\underline{Q}^i_{o,k,h}(s,a), \overline{Q}^i_{o,k,h}(s,a)]$$
 Value iteration with $\underline{r}_{o,k}(s)$

How to compute the optimistic expected return \widetilde{V}_k^i ?

3. We discard actions that are "dominated" by other actions



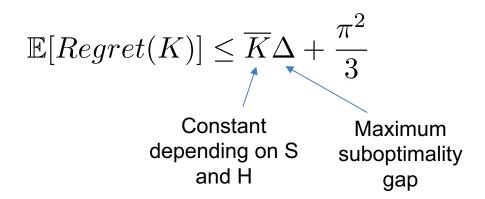
How to compute the optimistic expected return \widetilde{V}_k^i ?

3. We discard actions that are "dominated" by other actions

$$\widetilde{\mathcal{A}}_{k,h}^{i}(s) = \left\{ a \in \mathcal{A} : \overline{Q}_{o,k,h}^{i}(s,a) \ge \max_{a' \in \mathcal{A}} \underline{Q}_{o,k,h}^{i}(s,a') \right\}$$

Regret guarantees

Under Assumption 2, the expected regret of RfOCL at every episode K is bounded by:



The upper bound does not depend on the number of configuration M!

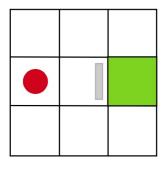
What we want to show:

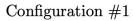
- AfOCL and RfOCL bring advantages over a MAB approach (UCB1).
- RfOCL performs better than AfOCL if Assumption 2 holds.
- 3. RfOCL is able to scale very well with a high number of configurations.

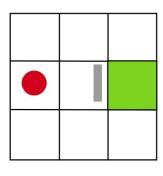
We compare our algorithms with UCB in three different domains:

- Configurable Gridworld
- Teacher-Student
- Marketplace

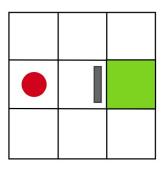
Configurable Gridworld







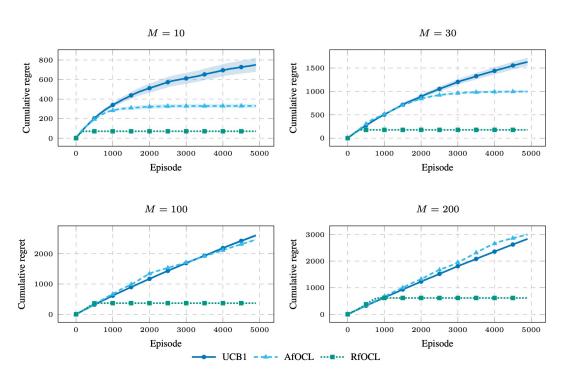
Configuration #2

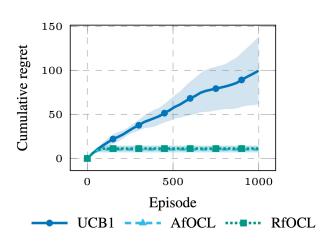


Configuration #3

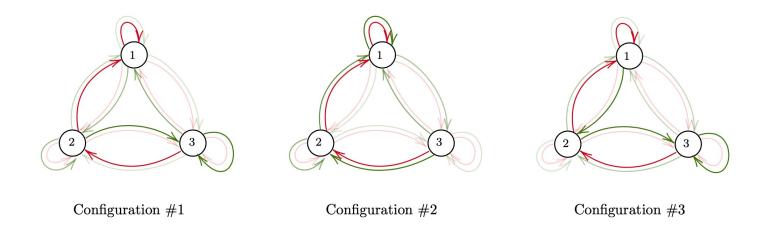
- The agent's goal is to reach the terminal state as soon as possible.
- The configurator's goal is to keep the agent in the central cell as long as possible.

Configurable Gridworld – Experiment



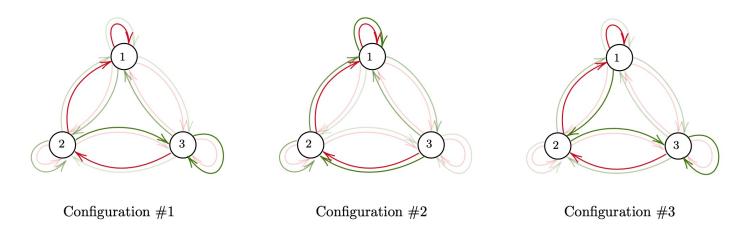


Student-Teacher



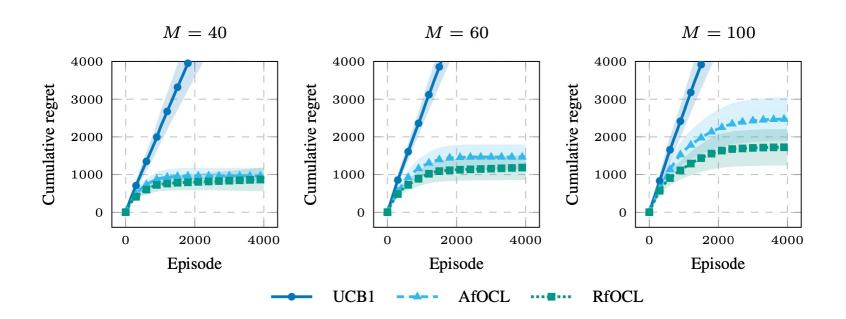
- The teacher (configurator) has a list of S exercises characterized by a different level of difficulty.
- The goal of the teacher is to find the right sequence of exercises.

Student-Teacher

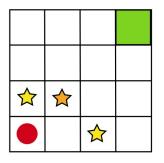


- The student (agent) perceives the level of difficulties of the exercises in a different way and it can decide to not answer the ones he find too difficult.
- The goal of the student is the same of the teacher: start solving most difficult exercises as soon as possible!

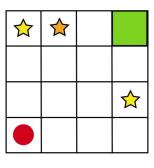
Student-Teacher - Experiment



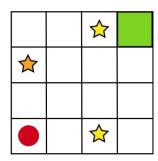
Marketplace



Configuration #1



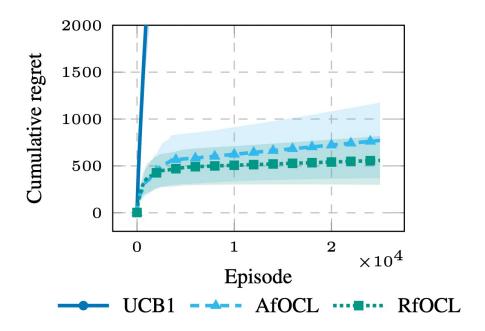
Configuration #2



Configuration #3

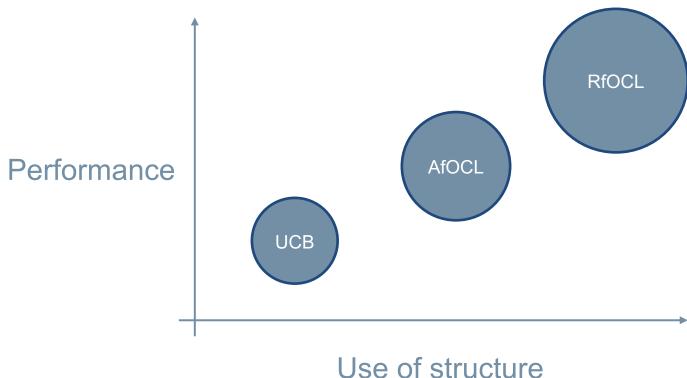
- The customer's goal is grab the only product it is interested in and reach the exit.
- The goal of the supermarket owner is to induce the customer to buy other products.

Marketplace - Experiment



Conclusions

Solving Non Cooperative Conf-MDPs



Future Research Directions

Fixed Stochastic policy

Awareness of the agent

Inverse Reinforcement Learning

Thanks for your attention!

Alessandro Concetti

Algorithm 8 Reward-feedback Optimistic Configuration Learning (RfOCL)

- 1: **Input:** $S, A, H, P = \{p_1, \dots, p_M\}$
- 2: Initialize $\mathcal{A}_{1,h}^i(s) = \mathcal{A}$ for all $s \in \mathcal{S}, h \in [H]$, and $i \in [M]$
- 3: Initialize $\overline{r}_{o,1}(s)=1, \ \underline{r}_{o,1}(s)=0, \ \text{and} \ N_{1,h}(s)=0 \ \text{for all} \ s\in \mathcal{S}$ and $h\in [H]$
- 4: **for** episodes $1, 2, \ldots, K$ **do**
- 5: Compute \widetilde{V}_k^i for all $i \in [M]$
- 6: Play p_{I_k} with $I_k \in \arg\max_{i \in [M]} \widetilde{V}_k^i$
- 7: Observe $(s_{k,1}, \widetilde{r}_{k,1}, a_{k,1}, \dots, s_{k,H-1}, \widetilde{r}_{k,H-1}, a_{k,H-1}, s_{k,H}, \widetilde{r}_{k,H})$
- 8: Compute $\overline{r}_{0,k+1}(s)$, $\underline{r}_{o,k+1}(s)$, and $N_{k+1,h}(s)$ for all $s \in \mathcal{S}$ and $h \in [H]$ using $\widetilde{r}_{k,1} \cdots \widetilde{r}_{k,H}$ as in Equation (5.6)
- 9: Compute $\underline{Q}_{o,k+1,h}^{i}(s,a)$, $\overline{Q}_{o,k+1,h}^{i}(\overline{s,a})$ for all $s \in \mathcal{S}$, $a \in \mathcal{A}$, $h \in [H]$, and $i \in [M]$
- 10: Compute the plausible actions for all $s \in \mathcal{S}$ and $h \in [H]$:

$$\mathcal{A}_{k+1,h}^i(s) = egin{cases} \{a_{k,h}\} & ext{if } i = I_k ext{ and } s = s_{k,h} \ \mathcal{A}_{k,h}^i(s) & ext{if } N_{k,h}(s) > 0 \ \widetilde{\mathcal{A}}_{k+1,h}^i(s) & ext{otherwise} \end{cases}$$

with $\widetilde{\mathcal{A}}_{k+1,h}^{i}(s)$ as in Equation (5.7).

11: **end for**

Marketplace

- Number of states: 16
- Number of actions: 4
- Agent's reward: -1 everywhere and 0.9 where there is the product.
- Configurator's reward: 0 everywhere and 1 where there is some products.
- Configurations: M random transition models

Student-Teacher – Nconf-MDP

- Number of states: 10 (exercises)
- Number of actions: 2 (answer/not answer)
- Agent's reward: difficulty perceived by the agent
- Configurator's reward: difficulty perceived by the configurator
- Configurations: M transition models that differ each other by the way they assign the probabilities to next states when the agent decides to answer.

Configurable Gridworld – Nconf-MDP

- Number of states: 9
- Number of actions: 4
- Agent's reward: -1 everywhere
- Configurator's reward: 0 everywhere and 1 in the central cell
- Configurations: M transition models with different values of p

Stackelberg Games

Definition 2.3.2 (Stackelberg Equilibrium). In a two-player game with player 1 as the leader, a strategy $a_1^{\star} \in \mathcal{A}_1$ is called a Stackelberg equilibrium strategy for the leader if

$$\min_{a_2 \in BR(a_1^*)} r_1(a_1^*, a_2) \ge \min_{a_2 \in BR(a_1)} r_1(a_1, a_2), \quad \forall a_1 \in \mathcal{A}_1, \tag{2.18}$$

where
$$BR(a_1) = \{a \in A_2 | r_2(a_1, a) \ge r_2(a_1, a_2), \forall a_2 \in A_2 \}.$$