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1. Introduction to the research topic

Machine Learning is an application of Artificial Intelligence that sets as its goal to develop methods that can
automatically detect patterns in data, and then to use the uncovered patterns to predict future data or other
outcomes of interest [35]. In recent years, a class of parametric machine learning techniques called Deep Learning
has led to astonishing achievements in the field. The key aspect of Deep Learning is the ability to learn how to
extract relevant features from data through the employment of many neural layers, thus not requiring field-specific
expertise [31]. As a consequence, the leverage of these techniques is very approachable and results in lower costs,
promoting the development of artificial intelligence applications outside the academic community.

Nonetheless, Deep Learning currently faces some obstacles that still hinder the technology to be fully exploited.
Humans have a remarkable capacity to quickly learn new concepts when provided with few examples. Conversely,
current popular deep learning techniques need thousand of samples to be able to generalize their knowledge
and make predictions on unseen data, making them extremely data inefficient. In the context of Supervised
Learning, this often translates into the need to manually label thousands of samples, which is cumbersome and
time-consuming. In Reinforcement Learning (RL) this translates in having access to a large number of training
trajectories and this may be unfeasible when the experience is directly observed from real-world interactions.

Meta-Learning, also known as “learning-to-learn”, is a sub-field of Machine Learning that exploits previous
experience to optimize learning algorithms to work well on novel tasks [16]. The discipline is currently most active
in the Supervised Learning setting and is often associated with the field of Few-Shot Learning, where models are
challenged to quickly learn new concepts while very few datapoints from the task at hand are available.

The problem is extremely hard, as models operating in low data regimes are especially prone to overfitting [33].
The field of Meta-Learning has been rising in the last few years, achieving super-human performances in simple
few-shot classification tasks [29]. The reasons for this are twofold; on one hand, deep-learning techniques have
been widely employed in Meta-Learning, on the other, the need for Deep Learning for lots of training data has
motivated the development of techniques to overcome its limitations. Deep Learning and Meta-Learning thus
form a symbiotic relationship that incentivizes progress in the two fields 1

The table below lists the most prestigious conferences related to Meta-Learning, along with their respective
h5-index. While they generally focus on the broader topics of Artificial Intelligence, Machine Learning, and Deep
Learning, such conferences also recently held workshops [2, 3] and tutorials [1] concerning Meta-Learning in the
last few years, indicating a rising interest in the subject.

Name of the conference Google Scholar h5-index
Neural Information Processing Systems (NIPS) 169
International Conference on Learning Representations (ICLR) 150
International Conference on Machine Learning (ICML) 135
AAAI Conference on Artificial Intelligence (AAAI) 95
International Joint Conference on Artificial Intelligence (IJCAI) 67
International Conference on Artificial Intelligence and Statistics (AISTATS) 52

1This is also reflected in the various meta-learning libraries that have been developed on top of deep learning oriented frameworks, such as
Higher [22] and Torchmeta [12].
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1.1. Preliminaries

We will mainly consider the problem of Meta-Learning in the context of few-shot classification tasks, for ease of
formulation and relevance to our focus.

Unlike standard classification, where samples are tuples of input and desired class label from a task, in
Meta-Learning a single sample represents an entire task. A task is defined as a dataset D = {(xi, yi)}, where xi
is an input and yi is the desired label for xi from a known set of possible labels L. The dataset D is thus split
into two disjoint sets, a support set S for learning the task and a prediction set B for testing the performance
with respect to the task. The goal is to find a model that performs well over a distribution of tasks p(D). The
meta-learning model is formalized by resorting to the concepts of learner and meta-learner. The learner fθ is a
classifier with parameters θ and trained to perform well with respect to a particular task. The meta-learner gφ is
an optimizer with meta-parameters φ and trained to update the learner parameters optimally for a generic task
from the distribution. The parameters θ′ = gφ(θ, S) for the new task are computed by the meta-learner starting
from some initial parameters θ via the support set S and should be such that the new model fθ′ achieves good
performance on the prediction set B. If we assume the output of the learner fθ to be modeled as the probability
fθ(x) = Pθ(y|x) for all y ∈ L, then the problem becomes to find the initial parameters θ and the meta-parameters
φ maximizing

ED=〈S,B〉∼p(D)

[
∑

(x,y)∈B
Pgφ(θ,S)(y|x)

]
In practice, the distribution p(D) is often unknown and we resort to learning from a fixed collection of tasks, a

meta-dataset, which can be modeled as samples from such distribution. This dataset can be split into a training set
and a validation set to estimate the meta-learning model performance, analogously to traditional learning tasks. It
is important to understand the difference between the training set and the support set. The former is a collection
of tasks as datasets and thus contains data from multiple tasks, while the latter contains datapoints from a specific
task. The same argument holds for the validation set and the prediction set.

The paradigm of episodic training proposed by Vinyals et al. [54] is the standard in the area of few-shot
classification, as it provides a simple way to sample, starting from a dataset featuring a number C of classes, many
few-shot classification tasks that are compatible with the learner, which in general can differentiate among a
number of classes N < C. A K-shot classification task is thus obtained by first sampling N different classes from
the C available in the dataset, each sampled class is then randomly assigned a specific label and a number K of
sampled datapoints belonging to the class, the obtained dataset is finally partitioned in support and prediction set.

Many meta-learning techniques have been implemented using TensorFlow [4] or PyTorch [41], two popular
machine learning frameworks for auto-differentiation.

1.2. Research Topic

Meta-Learning is a family of techniques that aim to generalize the knowledge derived from previously encountered
tasks to perform better on new, unseen tasks. The approach has been shown to successfully address some of
the challenges posed by Few-Shot Learning, where very few task-specific training datapoints are available. The
literature has recently provided promising results also thanks to the rapid developments and latest breakthroughs
in Deep Learning, achieving human-like performance in simple meta-learning tasks [29].

Meta-learning techniques may also shed light on the inner mechanisms of the human brain, as humans also
base their behavior and learning on previous experience. Though ambitious, Meta-Learning might play in the
future an important role in the discovery of Artificial General Intelligence.

Finally, by focusing on this topic, we aspire to broaden the availability of deep learning techniques. A model
that is capable to learn new, complex tasks and generalize knowledge with few training samples would prove
beneficial to experts confronting niche machine learning tasks with little training data available online, which is,
for instance, the case when working with clinical data.
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2. Main related works

2.1. Classification of the main related works

The meta-learning literature provides a useful taxonomy used to classify the various methods.
Metric-Based approaches predict the class probability y related to a new input x, given the support set S, by

leveraging a kernel function that measures the similarity between x and each datapoint in S. The performance of
a metric-based model thus entirely depends on the quality of its kernel function. Model-Based approaches make
no assumption on the shape of the output, focusing on models that can learn quickly with few training steps
thanks to their inner structure or the help of a powerful meta-learner. Their performance often relies on manual
design choices, a possible future improvement thus would be to provide a way to learn optimal configurations.
Optimization-Based approaches, such as MAML [14], find a shared initialization of the model parameters θ0, across
all tasks of the distribution that can be quickly adapted to task-specific parameters in few steps of gradient
descent. The main problem of this class of algorithms is the heavy load of computation they require when
meta-training complex learners because of second-order derivatives. Simplified models have been proposed
to scale optimization-based approaches and overcome their limitations, performing on par or better than the
original MAML model [15, 36, 44, 47, 59]. Conditional neural processes (CNPs) [17] combine the benefits of Gaussian
processes, able to incorporate prior knowledge in function approximation but computationally expensive, and
Deep Neural Networks. The result is a model that provides the flexibility of Stochastic Processes while featuring a
neural network structure that can be trained via gradient descent. Examples of few-shot learning models based on
CNPs [17] are VERSA [19] and CNAPs [46]. While CNPs perform very well in Few-Shot regression, classification,
and image completion tasks, they struggle to obtain similar performances in the many-shot case.

In the last few years, the field of Meta-Learning has thrived and managed to provide methods capable of
obtaining human and superhuman-level performance in simple tasks such as one-shot classification. Nonetheless,
it is evident that recent approaches still struggle when confronted with more complex tasks, such as in the case of
the Omniglot challenge [29].

2.2. Brief description of the main related works

2.2.1 Metric-Based Meta Learning

These approaches focus on learning generalizable embeddings, based on on the assumption that the embeddings
capture all necessarily discriminative representations of data and that simple non-parametric classifiers are
sufficed. This is the case of Matching Networks, where Vinyals et al. [54] propose to learn the embedding with
a differentiable nearest neighbor objective. Relation Networks [51] learn a deep distance metric for images to
predict labels of new samples given other labeled datapoints. Prototypical Networks [50] learn a metric space
where classification can be performed by computing the distance of a point to prototype representations of
each class, leading to good few-shot learning performance but quickly saturating when the number of shots is
large [52]. Few-shot Embedding Adaptation with Transformer (FEAT) [57] leverages the Transformer self-attention
mechanism to identify relationships among new and previously seen instances. Task dependent adaptive metric
for improved few-shot learning (TADAM) [38] learns a feature extractor and metric scaling for the task at hand
to provide better results. Triantafillou et al. [52] propose Proto-MAML, a model combining the simple inductive
bias of Prototypical Networks and the flexible adaptation mechanism of MAML, as well as Meta-Dataset, a novel
meta-learning benchmark that pays attention to the relationship within classes when generating new episodes to
obtain more realistic tasks.

2.2.2 Model-Based Meta-Learning and Fast weights

Ravi and Larochelle [45] employ Long Short-term Memory cells [24] to learn a few-shot meta-learner that is
capable of training a model in few update steps. Santoro et al. [48] employ Memory-Augmented Neural Networks
such as Neural Turing Machines [20, 21] to combine the benefits of gradient-based learning and memory methods.
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As a downside, the considered memory-addressing procedure is manually selected, whereas an optimal one could
be learned automatically.

Fast weights architectures divide weights in slow weights learned on all the tasks and fast weights generated
for the task at hand. Schmidhuber [49] showed that a slow feed-forward neural network can be used to generate
context-dependent weight changes for a second network, but only small scale experiments were conducted.
Subsequent work demonstrated practical applications of fast weights [18], where a generator network is learned
through evolution to solve an artificial control problem. Successively Ha et al. [23] explore fast-weights for
recurrent neural networks under the name of hyper-networks. Different variations of fast weights have been
proposed to generate weights of convolutional neural networks [37], including conditional modulation via affine
transformations of features [38, 42] and policies [9, 10, 26]. Meta Networks [34] features a learner that provides
the meta-learner with metadata on the task dataset to generate better-performing fast weights. In general, model-
based approaches resort in very powerful models, but they require careful hyper-parameter tuning, normalization
because of training instability [7, 23].

2.2.3 Optimization-Based Meta Learning

Model-Agnostic Meta-Learning (MAML) [14] is a simple, model-agnostic procedure that learns an optimal pa-
rameter initialization for a given learner by gradient descent. The need for multiple backward passes during
meta-training makes MAML prohibitively expensive to run on very complex learners. Some first-order approxi-
mation may alleviate the computation load at the expense of performance [36]. The proposed training paradigm,
characterized by an inner-outer loop on the tasks, has been widely reused in subsequent approaches from the
literature. Latent Embedding Optimization (LEO) [47] embeds the model parameters to perform gradient descent
in a low-dimensional space. Because the training procedure is based on MAML, LEO shares with the former
many issues, such as heavy computational cost. The problem is however partially addressed thanks to the low
dimensionality of the embedding. Fast Context Adaptation via Meta-Learning (CAVIA) [59] extends MAML by
dividing the model parameters in context and shared parameters, leading to less propensity to meta-overfitting,
easier parallelization, and better interpretability. MAML has also been shown to not perform well when tasks
differ greatly [28]. On this matter, Multimodal MAML [55] extends MAML by providing a parameter initialization
dependent on the mode of the task in case of multimodal task distributions. The approach does not, however,
contemplate the possibility for tasks from different modes to share some relevant knowledge, which may act as a
beneficial regularization. Hierarchically Structured Meta-Learning (HSML) [56] organizes tasks in a hierarchical
clustering structure to provide both knowledge customization on the task and knowledge sharing among tasks.
However, the ways in which the model can dynamically extend the task hierarchy are limited, which may be
especially suboptimal in a continual learning setting where the structure of tasks may change over time.

Transformation Networks (T-nets) [32] learn a distance metric that warps the activation space such that a single
gradient descent step yields parameters that are well suited for the task at hand. The distance metric is efficiently
learned by interleaving linear projections that are meta-optimized only in the outer loop and are shared across
tasks of the distribution. This approach is equivalent to learn a preconditioning matrix of the gradient. Similarly,
Warped Gradient Descent (WarpGrad) [15] extends T-nets with non-linear warp projections, and can be applied to
non-feed-forward neural networks. Moreover, the authors define a meta-objective in a joint search space across
tasks, resorting to a novel meta-optimization procedure that is agnostic on the number of steps of the inner loop.
Other forms of preconditioning have been proposed, by parameterizing the task gradient in different ways [33, 39].

2.2.4 Conditional Neural Processes

Versatile Amortized Inference (VERSA) [19] employs an amortization network taking as input a few-shot learning
dataset with an arbitrary number of shots and classes to provide a distribution over task-specific parameters.
Despite performing extremely well in one-shot classification tasks, the model is not able to preserve state-of-the-art
results when the number of shots increases. Conditional Neural Adaptive Processes (CNAPs) [46] comprises a
classifier learner whose parameters are adapted by a Conditional Neural Process taking as input the task dataset.
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Proposed future lines of work concerning CNAPs include the use of gradients and function approximations in the
adaptation mechanism, as well as considering distributional extensions.

2.2.5 Multitask Learning

Multitask and Meta-Learning are very related fields of Machine Learning. Both exploit the presence of shared
structures across multiple tasks to speed up the training, with a different goal in mind. Informally, Multitask
Learning aims to efficiently learn several tasks that are presented together, rather than training separate models
for each one. The hope is that, if tasks are related, sharing the knowledge across them will allow training a single,
compact model quicker and more efficiently. Meta-Learning instead, has the goal of extracting the knowledge
from a distribution of tasks, such as learning a prior, to generalize and learn quicker on new unseen tasks.

Several approaches exist to model shared information across tasks. They can be roughly separated into two
different categories i.e., methods where parameters of the model are close to each other in a geometric sense [13, 53]
and approaches where the parameters of the model share a common structure [11, 30, 40, 43, 58]. This structure can
be a clustering assumption [58], a (Gaussian) prior for the parameters of all tasks [30] or some advanced structure
like the Kingman’s coalescent [11] which is a continuous-time partitioned prior. Argyriou et al. [8] propose an
inductive bias on task parameters assuming them to lie in a low dimensional linear subspace. Successively, Agarwal
et al. [5] consider all task parameters to lie on a manifold. Based on the subspace assumption, Kumar and Daume III
[27] propose a framework to selectively share the information across tasks, assuming that each task parameter
vector is a linear combination of a finite number of underlying basis tasks. Other works differentiate between
tasks and address the fact that some of them might be unrelated, by assuming the existence of disjoint groups of
tasks [25], or allowing two tasks from different groups to overlap by having one or more bases in common [27].

2.3. Discussion

The meta-learning literature has produced a large variety of interesting and performing approaches in the last
few years, mainly thanks to the recent breakthroughs in Deep Learning. However, despite the latest efforts and
achievements in the field, the literature still does not offer a method that can generalize its knowledge on tasks
with new, unseen data domains, which hinders the ability to apply deep learning solutions when the amount
of available training data is low. Many popular approaches also struggle when scaling to the complexity of the
learner, which ultimately constrains them to poor performance when confronting complex tasks. In some cases,
heterogeneity of the various tasks may also be the cause of counter-productive transfer learning, where irrelevant
knowledge from a task is erroneously reused when dealing with another task. The problem may be addressed by
reinforcing the task-specific inductive bias, though it is important to introduce regularization to avoid unwanted
overfitting.

In light of these issues, one of our objectives is to determine whether the currently provided techniques can
be further extended to generalize previous knowledge on new tasks presenting unseen data domains. Current
techniques were designed and tested on simple benchmarks featuring samples from a single domain, such as
Omniglot [6]. A model capable of operating among different data domains would be able to transfer knowledge
among widely different tasks, potentially solving the lack of training samples that are observed in certain data
domains. As a practical example, our desired model would be able to generalize the recognition of malignant
tumors in x-ray images to images obtained through other less popular techniques or instruments which may
feature different colors and patterns.
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