Structured Meta-Learning for **Cross-Domain Few-Shot Classification**

Nicola De Angeli nicola.deangeli@mail.polimi.it Computer Science and Engineering Track Advisors: Matteo Matteucci, Marco Čiccone

Few-Shot Learning (FSL)

Many-Shot

Few-Shot

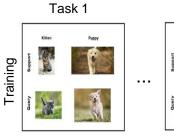
- A task is a problem that a machine learning model solves by adapting to some data
- In FSL, few training samples from the task are available
- Incredibly difficult for data-hungry models
- Humans can easily deal with the problem thanks to **experience**

From "Learning" to "Learning to Learn"

Training

Kitten

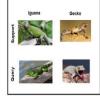
Puppy



Dataset

- A single task
- Objective: generalize to new examples within a task




Task

Task 1

Test

Meta-Dataset (our experience!)

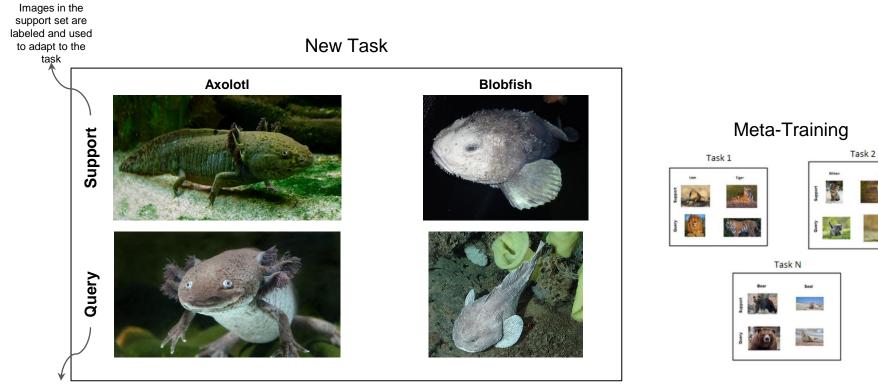
- Many FSL tasks
- Objective: generalize to new tasks

Meta-Learning

- The goal of Meta-Learning is "learning to learn"
 - Extracts and reuses knowledge by training on a **distribution of tasks** p(T)
- Characterized by the presence of a learner and a meta-learner
 - The learner follows an adaptation procedure to adapt to the task at hand
 - The meta-learner adjusts the adaptation procedure to improve performance over many tasks

MAML

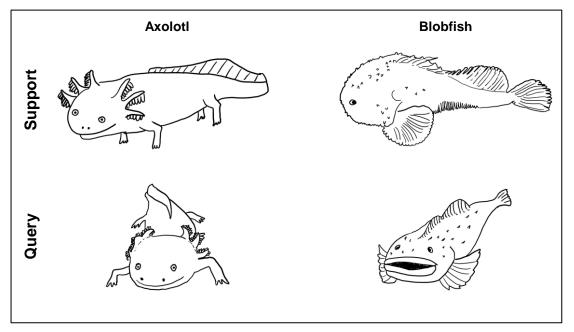
Require: p(T): distribution over tasks **Require:** α, β : step size hyperparameters

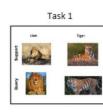

- 1: randomly initialize θ
- 2: while not done do
- 3: Sample batch of tasks $\mathcal{T}_i \sim p(\mathcal{T})$
- 4: for all \mathcal{T}_i do
- 5: Evaluate $\nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$ with respect to K examples
- 6: Compute adapted parameters with gradient descent: $\theta'_i = \theta \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta})$

7: end for

- 8: Update $\theta \leftarrow \theta \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$
- 9: end while

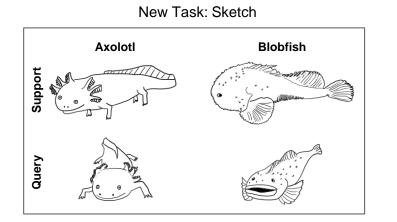
- Applies to a generic learner with parameters θ
- Only requirement for the learner is to be trainable via gradient descent
- Finds a single parameter initialization for the learner
- The algorithm features a nested loop
 - Inner loop: the learner
 - Outer loop: the meta-learner

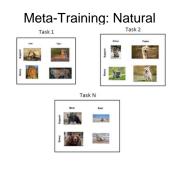

One-Shot Classification


Images in the query set are unlabeled and the learner predicts their label

One-Shot Classification

New Task: Sketch


Meta-Training: Natural

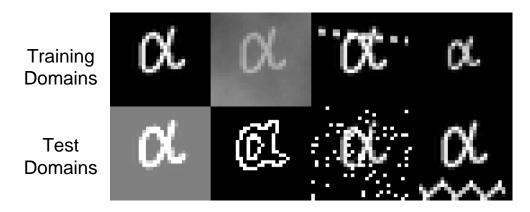


_	10	ask 2
	Kitten	Рирру
hopert		1
	and a	
Auen	1m	1
8		

Cross-Domain Few-Shot Learning (CDFSL)

- The above is an example of CDFSL, easy for humans and hard for meta-learning
- CDFSL deals with data coming from *heterogeneous domains*
 - Examples: different source cameras or different light conditions
- In our case:
 - the domain does not change same within a task
 - test tasks feature data from unseen domains
- We want to refine meta-learning techniques to deal with CDFSL

Disentangled and Simple Embedding


"[W]e would like our representations to disentangle the factors of variation" Bengio et al. 2013

- Disentanglement captures different independent properties of data in different units
- Many works argue that a disentangled embedding could prove useful in general
- Others believe training a **simple embedding** with few regularizations is enough
- We believe disentanglement to be the better solution for CDFSL:
 - Previous works have leveraged disentanglement to boost performance in standard FSL
 - Capturing domain information may be useful

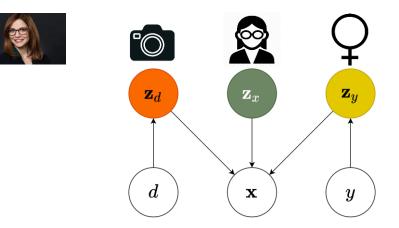
[Bengio et al. 2013, Van Steenkiste et al. 2019, Chen et al. 2019]

Our Contribution

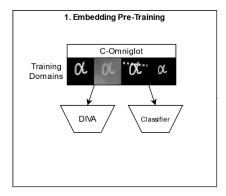
Benchmark: Corrupted-Omniglot

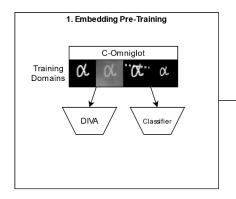
- We obtain *Corrupted-Omniglot* by augmenting the dataset of characters *Omniglot* with image corruptions
- Each corruption is a domain
- 16 domains are split into *training* and *test domains*
- 20-way, 1-shot tasks (20 classes per task, 1 example per class)

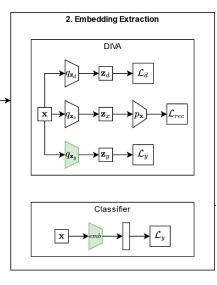
[Lake et al. 2019, Mu et al. 2019]

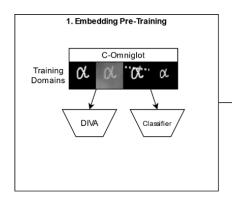

Meta-Learning Model: LEO

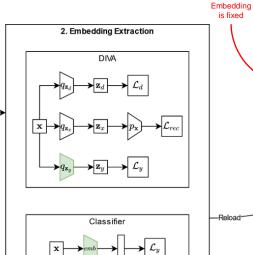
- Features inner task-specific loop and outer across-task loop, like MAML
- Encodes the task into a latent code
- Decodes the parameters of the learner from the latent code
- Performs gradient descent in the latent code

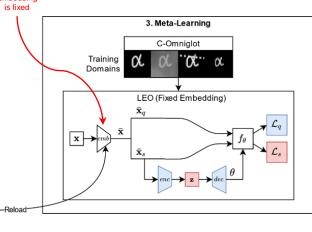

[Rusu et al. 2019]

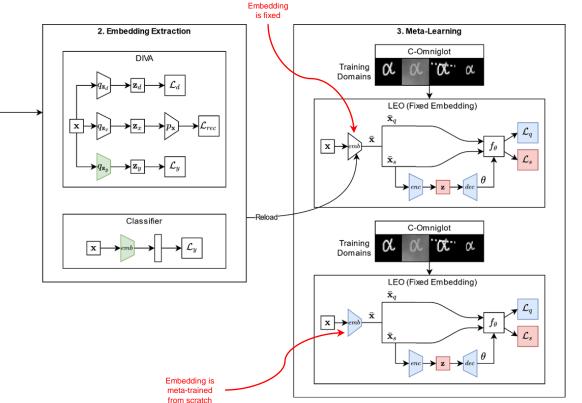

Disentanglement Model: DIVA




- Encodes the input in a disentangled representation
- The latent space is divided in three subspaces
 - Domain, residual, and class information
- Latent space in continuous and stochastic
 - Can potentially generalize to unseen domains


[llse et al. 2018]





17

Very general character shows up when not considering z_y during reconstruction

 \mathbf{z}_d クラロロフラ D 1.1 2 12 2 2 C J 13 U 2 ы

Training Domain Dotted Line

	$egin{array}{c} \mathbf{z}_d \ \mathbf{z}_x \ \mathbf{z}_y \end{array}$		\mathbf{z}_x	\mathbf{z}_y	$\mathbf{z}_x \ \mathbf{z}_y$	$\mathbf{z}_{d} \ \mathbf{z}_{y}$	$\mathbf{z}_d \ \mathbf{z}_x$
م کر.	Y	D	Ø	P	¥	P	Ø
2	カ	Ð	D	1	カ	1	D
ψ	Ŧ	0	Ð	Sar.	¥	No.	ġ
s.	÷∿	0	C	z	シ	z	0
Ý	ΨĽ	0	5	The second	Ψ	T	5
Nr.	K	D	0	N	K	N	0
	\mathcal{I}	D	5	X	X	X	\mathcal{D}

Very general character shows up when not considering z_y during reconstruction

 \mathbf{z}_d D 1.0 1 υ

Training Domain Dotted Line

	$egin{array}{c} \mathbf{z}_d \ \mathbf{z}_x \ \mathbf{z}_y \end{array}$		\mathbf{z}_x	\mathbf{z}_y		$\mathbf{z}_{d} \ \mathbf{z}_{y}$	
م لې	Y	D	Ø	P	¥	P	Ø
2	力	D	D	1	カ	7	D
ţţ	Ŧ	0	Ð	Sar	¥	No.	ġ
rsgr~	Зų.	0	C	Ŷ	৵	÷	0
¥	ΨĽ	0	5	1 m	Y	1º	3
780	K	D	Ø	N	X	N	0
ŢŢŢ	Z,	D	5	X	X	X	\Box

distant.

Very general character shows up when not considering z_y during reconstruction

	$egin{array}{c} \mathbf{z}_d \ \mathbf{z}_x \ \mathbf{z}_y \end{array}$		\mathbf{z}_x	\mathbf{z}_y	$\mathbf{z}_x \ \mathbf{z}_y$	$\mathbf{z}_{d} \ \mathbf{z}_{y}$	$\mathbf{z}_d \ \mathbf{z}_x$
ل ت.	Т	0	3	Т	Ţ,	T	0
2	7	D	D	7	7	7	υ
. •	Ę,	D	Ч	(}	θ	()+	\mathcal{T}
A.	3	D	Ð	3	3	1	5
۳	P	0	12	R	Ч	D	12
R	2	D	Ð	11	2	R	Ð
ÌK	Л	D	Ο	π	71	T	Q

Training Domain Dotted Line

	$egin{array}{c} \mathbf{z}_d \ \mathbf{z}_x \ \mathbf{z}_y \end{array}$	\mathbf{z}_d	\mathbf{z}_x	\mathbf{z}_y	$\mathbf{z}_x \ \mathbf{z}_y$	$\mathbf{z}_{d} \ \mathbf{z}_{y}$	$\mathbf{z}_d \ \mathbf{z}_x$
<u>م</u> لې	Ŷ	D	Ø	P	¥	P	Ø
2	辺	D	D	1	友	1	D
ţ	Ŧ	0	Ð	\$n	¥	No.	ġ
s.	z∿	0	IJ	Þ	∻	÷	0
¥	the second secon	0	5	the second	Y	P	5
78	W	D	()	N	X	N	()
ŢŻ,	The	D	5	X	X	X	5

Very general character shows up when not considering z_y during reconstruction

 \mathbf{z}_d \mathbf{z}_x D

Training Domain Dotted Line

	$egin{array}{c} \mathbf{z}_d \ \mathbf{z}_x \ \mathbf{z}_y \end{array}$	\mathbf{z}_d	\mathbf{z}_x	\mathbf{z}_y	$\mathbf{z}_x \ \mathbf{z}_y$	$\mathbf{z}_{d} \ \mathbf{z}_{y}$	$\mathbf{z}_d \\ \mathbf{z}_x$
، کې	Y	D	Ø	P	¥	P	Ø
2	カ	D	D	7	力	1	D
ξţ	Ŧ	0	Ð	500	Ħ	No.	Ģ
ŝ	ÿ	0	C	z	∻	÷	6
Ý	y y	0	5	1 m	Y	1º	3
78.	K	D	Ø	N	K	N	0
	A	D	5	X	X	X	\mathbf{C}

Very general character shows up when not considering z_y during reconstruction

	$egin{array}{c} \mathbf{z}_d \ \mathbf{z}_x \ \mathbf{z}_y \end{array}$	\mathbf{z}_d	\mathbf{z}_x	\mathbf{z}_y	$\mathbf{z}_x \ \mathbf{z}_y$	$\mathbf{z}_d \ \mathbf{z}_y$	$\mathbf{z}_d \\ \mathbf{z}_x$
	T						
£.,	7	D	D	1	7	7	D
÷.	Ą	D	Y	(}	θ	()÷	Σ^{\dagger}
, with the second se	3	D	Ð	3	3	3	63
ש:	P	0	12	J	Ч	D	12
R	R	D	D	12	R	R	Ð
ÌK	Ж	D	Ο	\overline{D}	\mathcal{I}	য	G

Training Domain Dotted Line

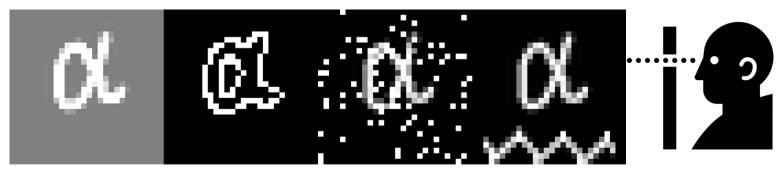
	$egin{array}{c} \mathbf{z}_d \ \mathbf{z}_x \ \mathbf{z}_y \end{array}$	\mathbf{z}_d	\mathbf{z}_x	\mathbf{z}_y	$\mathbf{z}_x \ \mathbf{z}_y$	$\mathbf{z}_{d} \ \mathbf{z}_{y}$	$\mathbf{z}_d \\ \mathbf{z}_x$
م کر.	Y	D	Ø	P	¥	P	Ø
2	辺	D	D	1	겄	1	D
ξ'n	¥	0	Ð	Sa-	¥	No.	Ģ
s.	÷	0	ບ	z	∻	z	6
ф	ΨĽ	0	ŋ	The second	ΨY	P	3
M.	W	D	Ø	N	K	N	0
ŢŢ,	Å.	D	5	X	X	X	\mathbf{C}

Very general character shows up when not considering z_y during reconstruction

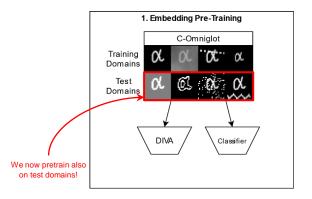
 \mathbf{z}_d クフロロフフ D 2 12 2 2 6 1 U ß 2 ы

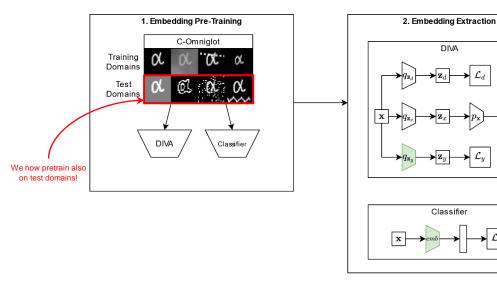
Training Domain Dotted Line

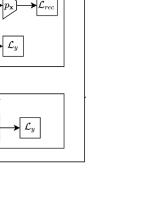
	-	\mathbf{z}_d		\mathbf{z}_y	\mathbf{z}_y	-	\mathbf{z}_x
<u>م</u> لوم	Ŷ	D	Ø	P	¥	P	Ø
2	力	D	D	27	カ	1	D
τţ	Ŧ	0	Ð	511	¥	No.	Ģ
s an	ş	0	L)	3~	∻	z	0
¥	٣	0	5	٣	ΨĽ	P	0
Mr.	W	D	0	N	X	N	()
ŢŢ	\mathcal{I}	D		X	X	X	\mathcal{L}

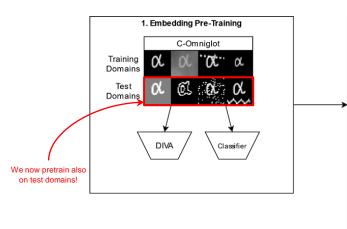

Meta-Learning Results

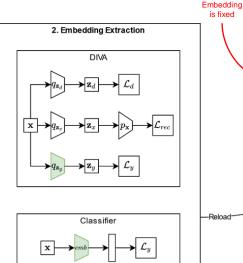
	Class Accuracy					
Embedding	Training Domains	Test Domains				
DIVA	0.91	0.72				
Classifier	0.88	0.64				
Meta-Trained	0.95	0.76				

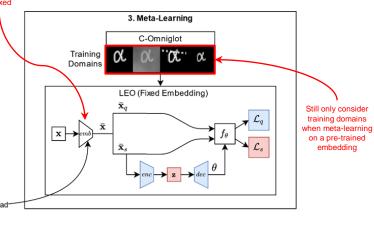

- DIVA is much better than Classifier in test domains
 - Promising!
- Meta-trained embedding outperforms both pre-trained embeddings
 - Not so promising...
 - Meta-training may play an important role in generalizing to unseen domains

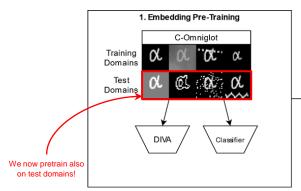

Introducing Oracle Models

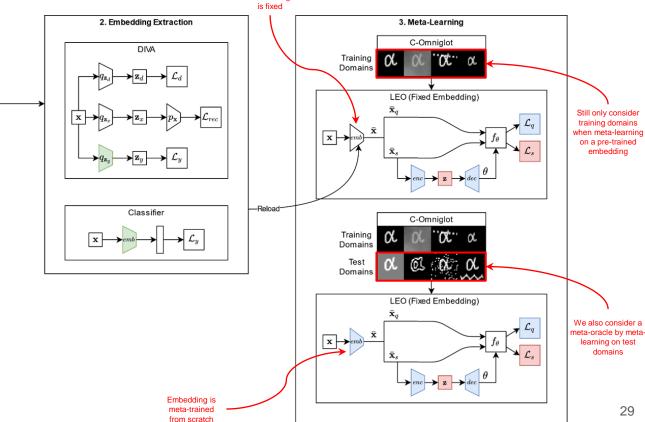

Test Domains




- What if we had a disentangling model that can generalize to unseen domains?
- We can position ourselves in this "what if" scenario by leveraging oracle models
 - Oracle models are trained on images from **both training and test domains**







Embedding

Very general character shows up when not considering z_y during reconstruction

 \mathbf{z}_d 5 5 Ľ... 2 2 **П П** $\nabla \Box D D$ \Box η η 1 罚 時 \mathbf{r} 1

Training Domain Dotted Line

	$egin{array}{c} \mathbf{z}_d \ \mathbf{z}_x \ \mathbf{z}_y \end{array}$		\mathbf{z}_x	\mathbf{z}_y		$\mathbf{z}_{d} \ \mathbf{z}_{y}$	
$\overline{\mathcal{A}}$	J.	m	7	J	τ	<u> </u>	rd.
						2	
ᡇ	Ъ	П	Ţτ	ę	£	ç	Ţτ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3	u	Ũ	3	3	~~~	A
P	P	**	F	P	٣	p	13
~P?	'n	**	Ð	R	P,	ЧЦ,	19
यहे	TA I	11	Ц	A	$\overline{T}$	"A"	11



Very general character shows up when not considering  $z_y$  during reconstruction

 $\mathbf{z}_d$ J. 6 Ľ... 2. 2 ПП  $\nabla \Box \eta \eta$ 1 罚 時 1  $\mathbf{b}$ 

Training Domain Dotted Line

	$egin{array}{c} \mathbf{z}_d \ \mathbf{z}_x \ \mathbf{z}_y \end{array}$		$\mathbf{z}_x$	$\mathbf{z}_y$		$\mathbf{z}_{d} \ \mathbf{z}_{y}$	
$\overline{\mathcal{A}}$	$\overline{\mathcal{A}}_{\mathcal{A}}$	ŝ	7	J	τ	<u> </u>	rs.
						2	2
᠅ᢅᡝ	Ŷ	ñ	11	ç	Ą	ç	$\pi$
~~~~	3	U	Ũ	2	3	~~~	A
P	P	***	F	Y	٣	p	17
~P?	Ň	***	Ð	R	P,	Ϋ́Υ	19
र्घ्र	Ц,	* 1*	Б	A	T	"A"	11

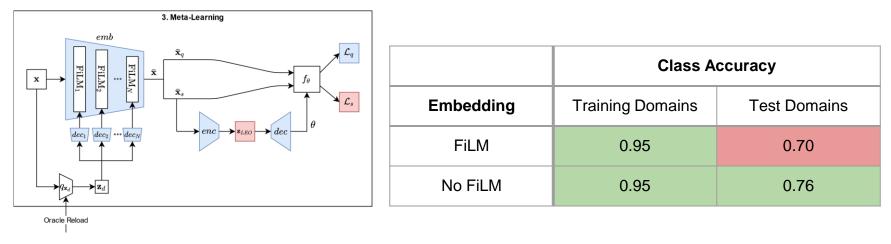
Meta-Learning Oracle Results

	Class Accuracy			
Embedding	Training Domains	Test Domains		
Oracle DIVA	0.91	0.87		
Oracle Classifier	0.94	0.90		
Meta-Oracle	0.94	0.93		

- Oracle Classifier outperforms Oracle DIVA!
 - Maybe disentanglement is not useful in our problem after all...
- Meta-Oracle is the best one, by far
 - Yet again hinting at importance of meta-training

Leveraging Oracle Domain Information

$egin{array}{c} \mathbf{Z}_d \ \mathbf{Z}_x \ \mathbf{Z}_y \end{array}$	\mathbf{z}_d	\mathbf{z}_x	$\mathbf{Z}_{\mathcal{Y}}$		$\mathbf{z}_d \\ \mathbf{z}_y$	
The the	m	Ð	7	τ	Ψ.	12
22	<u></u>				VYY.	~~~
ŶŶŶ	П	ŢΓ	Ş	ç	Ş	H
13. 3.		Ũ		3	~~~	A
prpr	`	B	¥	٤	p	13.
PY 77	11	Ð	ß	R	M,	19
政政	Ŷ	Ц	Ħ	Ħ	Ħ	11


- We are not yet done with disentanglement
- Oracle DIVA provides us with high-quality domain information
- Is there any use for domain information in our problem?

Including Oracle Domain in the Embedding

2. Embedding Extraction			
$ \qquad \qquad$		Class A	ccuracy
$\mathbf{x} \rightarrow q_{\mathbf{z}_x} \rightarrow \mathbf{z}_x \rightarrow p_{\mathbf{x}} \rightarrow \mathcal{L}_{rec}$	Embedding	Training Domains	Test Domains
	Oracle DIVA zd+zy	0.90	0.64
$ \qquad \qquad$	Oracle DIVA zy 0.88	0.88	0.85

- We consider both class and domain information when reloading Oracle DIVA's embedding
 - LEO may improve the quality of adaptation based on domain information
- The model overfits on training domains

Oracle Domain-Based Modulations

- We leverage modulations between the layers of the embedder
 - The parameters of the modulation are inferred based on domain information
 - Modulations may help in filtering domain information in the embedding, boosting performance
- Again, overfitting on training domains

[llse et al. 2018]

Takeaways

- Main takeaway: disentanglement does not seem to do much
 - Domain information is hard to leverage
- Many works in the literature claim disentanglement is useful...
 - ...not enough experiments?
 - ...biased literature?
- Other observations:
 - Meta-training a simple embedding is beneficial as opposed to pre-training
 - Filtering domain information boosts performance

VS

Future Work

- Verify our results on disentanglement with **further experimentation**
- If our results are verified:
 - Another interesting direction is to pursue *domain agnostic* representations
 - The adaptation process can be refined to learn how to filter unseen domain information from few samples

Any questions?