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Few-Shot Learning (FSL)

- A task is a problem that a machine learning model solves by adapting to some data

- In FSL, few training samples from the task are available

- Incredibly difficult for data-hungry models

- Humans can easily deal with the problem thanks to experience
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Many-Shot Few-Shot



From “Learning” to “Learning to Learn”
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Meta-Dataset (our experience!)

- Many FSL tasks

- Objective: generalize to new 

tasks



Meta-Learning

- The goal of Meta-Learning is “learning to learn”

- Extracts and reuses knowledge by training on a distribution of tasks 𝑝(𝒯)

- Characterized by the presence of a learner and a meta-learner

- The learner follows an adaptation procedure to adapt to the task at hand

- The meta-learner adjusts the adaptation procedure to improve performance over many tasks
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- Applies to a generic learner with 

parameters 𝜃

- Only requirement for the learner is to be 

trainable via gradient descent

- Finds a single parameter initialization for 

the learner

- The algorithm features a nested loop

- Inner loop: the learner

- Outer loop: the meta-learner
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[Finn et al. 2018]

MAML



One-Shot Classification
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Meta-Training: Natural
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Cross-Domain Few-Shot Learning (CDFSL)

- The above is an example of CDFSL, easy for humans and hard for meta-learning

- CDFSL deals with data coming from heterogeneous domains

- Examples: different source cameras or different light conditions

- In our case:

- the domain does not change same within a task

- test tasks feature data from unseen domains

- We want to refine meta-learning techniques to deal with CDFSL
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Disentangled and Simple Embedding

- Disentanglement captures different independent properties of data in different units

- Many works argue that a disentangled embedding could prove useful in general

- Others believe training a simple embedding with few regularizations is enough

- We believe disentanglement to be the better solution for CDFSL:

- Previous works have leveraged disentanglement to boost performance in standard FSL

- Capturing domain information may be useful
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“[W]e would like our representations to 

disentangle the factors of variation”

Bengio et al. 2013

[Bengio et al. 2013, Van Steenkiste et al. 2019, Chen et al. 2019]



Our Contribution
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Benchmark: Corrupted-Omniglot

- We obtain Corrupted-Omniglot by augmenting the dataset of characters Omniglot with image 

corruptions

- Each corruption is a domain

- 16 domains are split into training and test domains

- 20-way, 1-shot tasks (20 classes per task, 1 example per class)
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Domains

Test
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[Lake et al. 2019, Mu et al. 2019]



Meta-Learning Model: LEO

- Features inner task-specific loop and outer across-task loop, like MAML

- Encodes the task into a latent code

- Decodes the parameters of the learner from the latent code

- Performs gradient descent in the latent code

12
[Rusu et al. 2019]



Disentanglement Model: DIVA

- Encodes the input in a disentangled representation

- The latent space is divided in three subspaces

- Domain, residual, and class information

- Latent space in continuous and stochastic

- Can potentially generalize to unseen domains
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[Ilse et al. 2018]



Pipeline of the Models
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Pipeline of the Models
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Pipeline of the Models
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Embedding 

is fixed



Pipeline of the Models
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Embedding 

is fixed

Embedding is 

meta-trained 

from scratch



Pre-Trained DIVA Reconstructions
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Pre-Trained DIVA Reconstructions
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Pre-Trained DIVA Reconstructions
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Pre-Trained DIVA Reconstructions
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Pre-Trained DIVA Reconstructions
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Pre-Trained DIVA Reconstructions
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Meta-Learning Results

- DIVA is much better than Classifier in test domains

- Promising!

- Meta-trained embedding outperforms both pre-trained embeddings

- Not so promising...

- Meta-training may play an important role in generalizing to unseen domains
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Class Accuracy

Embedding Training Domains Test Domains

DIVA 0.91 0.72

Classifier 0.88 0.64

Meta-Trained 0.95 0.76



Introducing Oracle Models

- What if we had a disentangling model that can generalize to unseen domains?

- We can position ourselves in this “what if” scenario by leveraging oracle models

- Oracle models are trained on images from both training and test domains
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Test Domains



Pipeline of the Oracle Models
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Pipeline of the Oracle Models
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Pipeline of the Oracle Models
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Pipeline of the Oracle Models
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Pre-Trained Oracle DIVA Reconstructions
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Pre-Trained Oracle DIVA Reconstructions
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Meta-Learning Oracle Results

- Oracle Classifier outperforms Oracle DIVA!

- Maybe disentanglement is not useful in our problem after all...

- Meta-Oracle is the best one, by far

- Yet again hinting at importance of meta-training
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Class Accuracy

Embedding Training Domains Test Domains

Oracle DIVA 0.91 0.87

Oracle Classifier 0.94 0.90

Meta-Oracle 0.94 0.93



Leveraging Oracle Domain Information

- We are not yet done with disentanglement

- Oracle DIVA provides us with high-quality domain information

- Is there any use for domain information in our problem?
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Including Oracle Domain in the Embedding
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Class Accuracy

Embedding Training Domains Test Domains

Oracle DIVA zd+zy 0.90 0.64

Oracle DIVA zy 0.88 0.85

- We consider both class and domain information when reloading Oracle DIVA’s embedding

- LEO may improve the quality of adaptation based on domain information

- The model overfits on training domains



Oracle Domain-Based Modulations
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- We leverage modulations between the layers of the embedder

- The parameters of the modulation are inferred based on domain information

- Modulations may help in filtering domain information in the embedding, boosting performance

- Again, overfitting on training domains

Class Accuracy

Embedding Training Domains Test Domains

FiLM 0.95 0.70

No FiLM 0.95 0.76

[Ilse et al. 2018]



Takeaways
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- Main takeaway: disentanglement 

does not seem to do much

- Domain information is hard to leverage

- Many works in the literature claim 

disentanglement is useful…

- …not enough experiments?

- …biased literature?

- Other observations:

- Meta-training a simple embedding is 

beneficial as opposed to pre-training

- Filtering domain information boosts 

performance

vs



Future Work

- Verify our results on disentanglement 

with further experimentation

- If our results are verified:

○ Another interesting direction is to 

pursue domain agnostic representations

○ The adaptation process can be refined 

to learn how to filter unseen domain 

information from few samples
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Thank you!
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Any questions?


