
Politecnico di Milano • Honours Programme • March 2020 • CSE Track

State of the Art on: Towards a unifying
model for data-intensive applications

Nicolò Felicioni, nicolo.felicioni@mail.polimi.it

1. Introduction to the research topic

In recent years, the need for software applications that can handle large amounts of rapidly varying and
heterogeneous data has become greater and greater. We refer to these applications as data-intensive. They require
a distributed software system to store and process the large amount of data, in order to exploit the resources of
many interconnected computers. The research areas involved in this topic are mainly the database research area
and the distributed systems and algorithms one. The former is the area that deals with storing and managing
data developing databases and database management systems (DBMS), while the latter has the main focus on the
creation of distributed platforms and algorithms to process and analyze large quantity of data.

Among the most relevant journals1 and conferences2 related to the research topic, there are:

• ACM SIGMOD Conference

• ACM Symposium on Principles of Database Systems

• ACM Transactions on Computer Systems

• EuroSys - the European Systems Conference

• IEEE International Conference on Data Engineering

• IEEE Transactions on Parallel and Distributed Systems

• USENIX Annual Technical Conference

• USENIX Symposium on Operating Systems Design and Implementation

• The VLDB Journal

• VLDB Conference

1.1. Preliminaries

1.1.1 Data management preliminaries

A fundamental concept in database research is the relational model, introduced by Codd [6] in the 1970. In this
paradigm, data are conceptually represented in form of an n-ary relation, that is a set of tuples (d1, d2, ..., dn), where
di is an element of the correspondent data domain Di. Relations are represented in tabular form, where rows are
tuples and every column corresponds to an attribute, which has a particular data domain. Every row is uniquely
identified by a key. Also, relational database usually provide so-called transactions. A use case of a database with
necessity of processing multiple transactions is called On-line Transaction Processing (OLTP). A transaction is a
unit of work that must be atomic (it must complete in its entirety or it must abort in its entirety), consistent (it
must be compliant with eventual integrity constraints of the database), isolated (concurrent transactions should

1According to the Impact Factor (citation/documents in the last two years) taken from ScimagoJR, https://www.scimagojr.com
2According to the GII-GRIN-SCIE Conference Rating, http://gii-grin-scie-rating.scie.es/conferenceRating.jsf and the H5 index

taken from Google Scholar, https://scholar.google.com

1

https://www.scimagojr.com
http://gii-grin-scie-rating.scie.es/conferenceRating.jsf
https://scholar.google.com


Politecnico di Milano • Honours Programme • March 2020 • CSE Track

not interfere among each other) and durable (the effect of a transaction must be stored persistently). This set of
properties is usually referred to as ACID [8]. A prototype of a relational database was published in 1976 and it
was called System R [1]. The language used to manipulate data present in the database was SQL [3], introduced
in 1974 for System R. From then on, relational DBMS almost always used SQL or a SQL dialect to manipulate
data. Because of this, when non-relational DBMSs were introduced, they were called NoSQL [11]. By definition,
NoSQL is a highly heterogeneous category since it is formed by all the data models that are not relational. NoSQL
systems were born from the desire to overcome the scalability issues of the classical relational databases, at the
cost of relaxing some constraints on strong data consistency and giving up some transactional guarantees.

In last years, a new category of databases started to be relevant in the research domain. These so-called
NewSQL systems [14] try to reconcile the high scalability and the high performance of NoSQL databases with the
guarantees given by the classical relational model.

1.1.2 Data processing preliminaries

In the data processing domain, the increasing size of data motivated the development of a new kind of systems
explicitly designed for distributed processing in large-scale compute infrastructures. These systems all trace their
roots to the MapReduce paradigm [5]. MapReduce is a programming model introduced by Google in 2004 that
enables application programs to be written in terms of high-level operations (Map and Reduce) on immutable
data, while the runtime system controls scheduling, load balancing, communication and fault tolerance.

The first open-source implementation of the MR3 paradigm was Hadoop in 2006. From this point on, data
processing systems evolved to overcome the limitations of the paradigm (e.g. being constrained to use only Map
and Reduce operations) and resulted in the development of Spark (for batch data processing) and Flink (for
streaming data processing).

1.2. Research topic

Data-intensive applications are applications that have as their primary challenge the management of large
amounts of data, that are rapidly changing and that are highly heterogenous[10], as opposed to compute-intensive
applications, where the CPU is the bottleneck.

The development of this kind of applications is fundamental to sustain the increase of volume, production
velocity and heterogeneity of data that will arise in the next future [4]. For example, the Internet of Things (IoT)
advent is bringing billions of smart devices that will produce enormous quantity of data [12]. Data produced by
IoT devices are also rapidly changing and often have to be analyzed in real-time. Another trending sector is the
one of autonomous vehicles [7], that contributes to this phenomenum of "data flooding" making cars continuously
produce data. Apart from machine-created data, there are also human-created data, like social networks’ data,
that billions of users created and continue to create, or, more in general, all the data created while surfing the web.
These data are usually collected for advertising and for training recommendation systems of various websites
[13]. This "information overload" made business strategies data-driven, i.e. taking into account data collected by
customers to make strategies and take business decisions. For these reasons, creating software systems that are
scalable and capable of handling large quantities of data is relevant in modern computer science research.

3Short for MapReduce.

2



Politecnico di Milano • Honours Programme • March 2020 • CSE Track

2. Main related work

2.1. Classification of the main related work

In the database world, a first classification of the newly developed and highly scalable databases can be the
division between NoSQL and NewSQL. Then, within the NoSQL family systems can be distinguished based on
the data model they adopt, that can be document-based, graph-based, and others. In the data processing domain,
it is possible to distinguish the two main category of batch processing, that is a category of tools that process
batches of data all together, and stream processing, that is a category of tools that process data in real-time, one
datum after the other.

A possible classification of some relevant systems present in literature or industry is shown in Table 1.

DATA-INTENSIVE CLASS SYSTEM
Batch processing Spark, Hadoop

Stream processing Flink, Kafka streams
NewSQL VoltDB, Spanner

NoSQL

Document-based MongoDB
Wide column Cassandra, Bigtable
Time series InfluxDB

Key-value pairs Redis
Graph-based Neo4j, Dgraph

Table 1: A classification of some relevant systems.

2.2. Brief description of the main related work

2.2.1 Batch processing

In the data processing domain, the increasing size of data motivated the development of a new kind of systems
able to process a data amount that is so large that can not fit into a single machine and therefore they were
explicitly designed for distributed processing in large-scale compute infrastructures. Batch processing systems
are a special kind of data processing systems, called like this because they take data statically loaded all in one
time (a batch), but some of them also has support for streaming data (i.e. a flow of data that is dynamically
produced by a source and reach the system at high speed). These systems all trace their roots to the MapReduce
paradigm, a programming model introduced by Google in 2004. In the MR research paper [5] there were present
some architectural characteristics that were destined to influence deeply all the later batch processing systems. For
example, the fact that a job submitted by the user was split in various tasks and a runtime system, that is not under
user’s control, should take care of the scheduling on the various nodes. Thanks of the scheduling mechanism,
the system could make various optimizations –like load balancing– and it was able to provide fault-tolerance
(important aspect since the platform was designed to run on commodity hardware4) by dynamically switching to
another working node when a node stops running. The first open-source implementation of Google’s MapReduce
was Hadoop, released in 2006. Despite being promising, the MR approach had also limitations, such as the fact
that it was a very fixed and limiting paradigm, since it constrained users to create programs only in terms of the
Map and the Reduce primitives. Another relevant limiting factor was that every stage had to read and write data
from disk, that acted as a bottleneck in the processing. The desire to overcome these limitations resulted in the
development of Spark.

4Cheap, non-specialized hardware.

3



Politecnico di Milano • Honours Programme • March 2020 • CSE Track

Apache Spark5 [16] is a cluster computing platform to process batch of data in a distributed and parallel
fashion. It was inspired by Google’s MapReduce and Apache Hadoop, but it has some improvements with respect
to the previous architectures that make Spark more suitable for modern hardware. Indeed, Spark can exploit
modern main memory capabilities thanks to its efficient caching mechanism, that makes it faster than Hadoop up
to 100 times in some applications. In addition, Spark introduces new operators –other than to map and reduce–
and can process an arbitrary number of stages, supporting also iterative processing. The scheduler ensures that the
computation takes place close to the data and this strongly optimizes the processing. Spark supports also stream
processing through micro-batching, meaning that the engine accumulate the streaming input up to a certain size
to form a micro-batch and then it processes the batch in a batch processing manner.

2.2.2 Stream processing

Stream processing systems are systems that deal with data streams, that are unbounded flows of data. Usually,
data streams have to be processed timely since often data coming from a stream are not valuable anymore after a
certain period of time. Examples of stream processing applications are real-time computer performance monitoring
or real-time stock market analytics.

Apache Flink6 [2] is one of the most relevant cluster computing platform for stateful computations over data
streams. The main difference with Spark is that Flink does not have a scheduler and a job is not split into
stages that are scheduled. Instead, a pipeline formed by the selected operators is deployed as soon as the job
is submitted. This static piplined approach can decrease the latency but also decrease the throughput of the
application. Therefore, Flink is preferred when you have a strict requirement on low latency. Flink supports also
batch processing by simply streaming the static batch of data. In this case, though, all the various optimization
due to a dynamic scheduling are lost, since Flink statically deploys a fixed pipeline.

2.2.3 NoSQL

The NoSQL family of databases is difficult to define precisely, because in literature the definition can be found
with disparate meanings. Usually, the term is used to indicate a database that is non-relational, can be distributed
and it is horizontally scalable7. But this means that all the databases that have data models that are not relational
could be called NoSQL, from the ones that are key-value pairs store to the document-based systems. These
systems were born from the desire to overcome the scalability issues of the classical relational databases, at the
cost of relaxing some constraints on strong data consistency and giving up some data guarantees. Indeed, it is
almost always the case that a NoSQL system does not have transaction with fully ACID guarantees.

Redis8 is the most known example of a NoSQL key-value database. It has very high perfomance thanks to
the memory-oriented execution, a feature that is typical of NoSQL systems. It supports also persistence with the
mechanisms of database snapshots and append-only files (AOF). In Redis a value can be a complex data structure,
for example list, hash table, set, string and others. It can be replicated and partitioned, but it does not have any
transactional guarantee. A completely different approach, but still in the very broad category of NoSQL, is the
one adopted by MongoDB.

MongoDB9 is a database that stores data in form of a JSON-like documents. It supports replication and
partitioning. Thanks to the document data format, it is a very flexible datastore that is able to adapt very well
to possible schema changes. In fact, MongoDB is called schema-less, meaning that there is no constraint on
the structure of the documents that it stores. It supports distributed multi-document transactions (from version
4.210) with slightly less guarantees than the ones of a classical relational database, but it does not have joins. A

5https://spark.apache.org/docs/latest/
6https://ci.apache.org/projects/flink/flink-docs-release-1.10/
7https://nosql-database.org
8https://redis.io/documentation
9https://docs.mongodb.com

10https://docs.mongodb.com/manual/release-notes/4.2

4

https://spark.apache.org/docs/latest/
https://ci.apache.org/projects/flink/flink-docs-release-1.10/
https://nosql-database.org
https://redis.io/documentation
https://docs.mongodb.com
https://docs.mongodb.com/manual/release-notes/4.2


Politecnico di Milano • Honours Programme • March 2020 • CSE Track

document, in order to reference to another one, should embed the other document (document embedding) or it
should contain a field with the primary key of the other one (document linking).

2.2.4 NewSQL

NoSQL systems are valuable tools, especially in those cases when it is important to handle in a distributed fashion
large amounts of data. Another big achievement from those kind of systems is the high performance reached
in the data management. Albeit there are benefits, there are some weaknesses too. The biggest flaw is that they
usually do not support full ACID transactions. However, nowadays OLTP scenarios with great quantity of data
are a matter of growing relevance and researchers tried to find a new solution for an efficient distribution of
the classical relational database model, with full support for transactions and their guarantees. These types of
solutions are called NewSQL, since they try to make scalable as much as possible the traditional relational systems,
while preserving all their guarantees. The NewSQL implementations are heterogeneous, so now we present the
VoltDB solution as representative for the category.

VoltDB11 [15] is a main memory transactional database, designed to be highly available and horizontally
scalable, while providing all the transactional guarantees typical of classical relational databases. It was the
evolution of the H-store [9] research project and it uses as transactions only stored procedures defined a priori. The
transactions are analyzed at compile time, categorized and stored inside the runtime system. With this approach
VoltDB achieves ACID guarantees without paying much coordination overhead.

2.3. Discussion

The presented data systems offer solutions to solve specific data processing and management tasks, but often
requirements of a data-intensive application can be more heterogeneous and therefore they cannot be satisfied
by any of these systems alone. Because of that, developers in practice build complex architectures that combine
multiple systems and then implement application logic in order to orchestrate their interaction. The problem is that,
in doing so, they move out of the disciplined programming paradigms of individual systems and lose their benefits
in terms of guarantees on the data and transparent deployment and communication. In addition, integrating
data systems together necessitates a deep understanding of their semantics, workload assumptions, performance
characteristics, deployment strategies, and configuration opportunities. For this reason, the development of a
formal modeling framework, which defines a high-level programming interface and captures the functionalities
and characteristics of data systems, is necessary. Also, this kind of systems usually present intersections among
them, therefore a unifying model can be useful to capture the semantics of the converging concepts of different
systems. This modeling framework can be a first fundamental step in the direction of a change of paradigm,
that leads to a new approach for designing data-intensive application. Following this new paradigm, developers
should define the application specifying for example the data to be stored, the guarantees and the performance
requirements and a runtime system should determine the best strategies for data format, replication, partitioning
and guarantees implementation. In this way, developers no more have to deal with trying to put different and
indipendently developed systems together in a sort of "software collage", where the formal guarantees provided
by the single systems could be lost.

11https://docs.voltdb.com

5

https://docs.voltdb.com


Politecnico di Milano • Honours Programme • March 2020 • CSE Track

References

[1] Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N., Griffiths, P. P., King,
W. F., Lorie, R. A., McJones, P. R., Mehl, J. W., et al. System r: relational approach to database management.
ACM Transactions on Database Systems (TODS) 1, 2 (1976), 97–137.

[2] Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., and Tzoumas, K. Apache flink: Stream
and batch processing in a single engine. Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering 36, 4 (2015).

[3] Chamberlin, D. D., and Boyce, R. F. Sequel: A structured english query language. In Proceedings of the 1974
ACM SIGFIDET (now SIGMOD) workshop on Data description, access and control (1974), pp. 249–264.

[4] Cilloni, S. Towords a unifying modeling framework for data-intensive tools. Master’s thesis, Politecnico di
milano, 12 2019. Supervisor: Alessandro Margara.

[5] Dean, J., and Ghemawat, S. Mapreduce: Simplified data processing on large clusters.

[6] EF, C. A relational model of data for large shared data banks. Communications of the ACM 13, 6 (1970), 377–387.

[7] Gerla, M., Lee, E.-K., Pau, G., and Lee, U. Internet of vehicles: From intelligent grid to autonomous cars
and vehicular clouds. In 2014 IEEE world forum on internet of things (WF-IoT) (2014), IEEE, pp. 241–246.

[8] Haerder, T., and Reuter, A. Principles of transaction-oriented database recovery. ACM computing surveys
(CSUR) 15, 4 (1983), 287–317.

[9] Kallman, R., Kimura, H., Natkins, J., Pavlo, A., Rasin, A., Zdonik, S., Jones, E. P., Madden, S., Stone-
braker, M., Zhang, Y., et al. H-store: a high-performance, distributed main memory transaction processing
system. Proceedings of the VLDB Endowment 1, 2 (2008), 1496–1499.

[10] Kleppmann, M. Designing data-intensive applications: The big ideas behind reliable, scalable, and maintainable
systems. " O’Reilly Media, Inc.", 2017.

[11] Leavitt, N. Will nosql databases live up to their promise? Computer 43, 2 (2010), 12–14.

[12] Nordrum, A. Popular internet of things forecast of 50 billion devices by 2020 is outdated (2016). Dosegljivo:
https://spectrum. ieee. org/tech-talk/telecom/internet/popular-internet-ofthings-forecast-of-50-billion-devices-by-2020-
is-outdated.[Dostopano: 11. 8. 2017] (2017).

[13] Ricci, F., Rokach, L., and Shapira, B. Introduction to recommender systems handbook. In Recommender
systems handbook. Springer, 2011, pp. 1–35.

[14] Stonebraker, M. New opportunities for new sql. Communications of the ACM 55, 11 (2012), 10–11.

[15] Stonebraker, M., and Weisberg, A. The voltdb main memory dbms. IEEE Data Eng. Bull. 36, 2 (2013), 21–27.

[16] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., McCauly, M., Franklin, M. J., Shenker, S., and

Stoica, I. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In
Presented as part of the 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12) (San
Jose, CA, 2012), USENIX, pp. 15–28.

6


	Introduction to the research topic
	Preliminaries
	Data management preliminaries
	Data processing preliminaries

	Research topic

	Main related works
	Classification of the main related works
	Brief description of the main related works
	Batch processing
	Stream processing
	NoSQL
	NewSQL

	Discussion


