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Abstract—New demands that arose in recent years led to the
development of systems able to handle large quantities of data,
which can be rapidly varying and heterogeneous. Examples of
such systems come from different research areas. The NoSQL
databases, developed for scalability and high availability, and the
NewSQL databases, which aim to bring transactional guarantees
with a new and faster architecture, come from the database
research area. Within the data-processing domain, research was
conducted on the creation of systems for batch processing, when
the data is static, and for stream processing, when the data
changes in real-time. All those systems try to solve specific
issues. However, nowadays, applications that are called data-
intensive have heterogeneous requirements. Hence, developers
usually employ several of these tools manually integrated with
ad-hoc application logic. With this approach, benefits related to
transparent deployment, specific optimizations, and correctness
guarantees are lost. In this paper, we noticed how the aforemen-
tioned systems have recurring concepts and features, and thus
we defined a unifying model to capture them. This model can
be used to describe data-intensive systems accurately and also to
highlight which are the functional, architectural, and correctness
concepts that those systems share.

Index Terms—database, data processing, distributed systems,
stream processing, real-time analytics

I. INTRODUCTION

Recently, the need for software applications that can handle
large amounts of rapidly varying and heterogeneous data has
continually increased.

The reasons for the emergence of such requirements are
numerous. Let us take, for example, the Internet of Things
(IoT) field as one of the most representative. Due to this
trending sector, smart sensors spread all over the world are
flooding the internet with large quantities of data. Usually, data
collected by IoT sensors must be analyzed in real-time. Also,
such data are highly heterogeneous. Other emerging fields
relevant noting are the spread of smartphones, autonomous
vehicles, and many others.

As a consequence, some software applications nowadays
have data – the quantity of data, the heterogeneity of data, or
the speed at which it changes – as their primary challenge.
We call those applications data-intensive [20].

In order to satisfy the requirements of this kind of appli-
cations, software systems with the purpose of reliably and
efficiently handle, store, and process the data started to gain
relevance. We call those data-intensive systems.

Traditionally, data management was done via database
management systems. This research area was born from the

ideas of Edgar Codd, who introduced the concept of the
relational model [14]. The software used to access and manage
a relational database was called Relational Database manage-
ment system (RDBMS). One of the first RDBMS prototypes
was System R [4], from the 1970s. Until the 2000s, more or
less every newly developed RDBMS was heavily influenced by
the design choices made by System R. This led to RDBMSs
relying on assumptions made on much older hardware, and
therefore to inefficient architectures.This issue amplified with
the passing of the years when data-intensive requirements
started to arise. For instance, the spread of the web caused
a massive increase in data generation. Such a large quantity
of data was not expected by the researchers that developed
System R. For these reasons, in the 2000s, a new family
of database management systems (DBMSs) was born, called
NoSQL. The name was a statement of purpose that made clear
their refuse of the old relational model in favor of a new data-
intensive architecture. After this wave, researchers focused on
mixing the benefits of the relational model with the ones of
the NoSQL systems. These efforts eventually resulted in the
development of the so-called NewSQL systems [24], more or
less during the 2010s.

In parallel, within the distributed systems research area, the
development of MapReduce [16] in 2004 was a breakthrough
for distributed data processing. It consisted of a programming
framework, developed by Google, used to parallelize the
processing of large quantities of data stored in a distributed
cluster of nodes. In this way, it facilitated the extraction of
useful information, through functional primitives, from large
quantities of data, which is particularly relevant for answering
analytical queries. Since the data is stored and fixed during
the processing, these frameworks for processing static stored
data were also called batch processing systems.

From this point, the continuous evolution of distributed
data processing systems led to the development of stream
processing systems, which are systems that process data that
arrive in real-time and at a fast rate. The fact that the data
is not stored in static batches may cause several issues. This
research area emerged because streaming data processing is
fundamental in some use cases, e.g., for stock market data
processing, where data quickly become stale, and so it is of
utmost importance to process them in real-time.

The existing data-intensive systems all provide support in
solving specific tasks. However, data-intensive requirements



are often heterogeneous, and therefore can not be satisfied
by any of those systems alone. For this reason, in practice,
developers must use a complex architecture combining several
data-intensive systems and write ad-hoc application logic that
dictates their interaction. Nevertheless, in doing so, they lose
all the benefits provided by the individual systems in terms of
correctness guarantees, performance, transparent deployment,
and communication. Furthermore, usually, system documen-
tations are ambiguous and confusing, and this may make
harder the integration process. Also, data-intensive systems
face recurring issues, and sometimes they significantly overlap.
Therefore, with the aforementioned approach, the architecture
would be inefficient and redundant.

In this work, we present for the first time a unifying model
that aims to capture recurring concepts of the various compo-
nents of all data-intensive systems. This model brings several
contributions to the community. For instance, it introduces
a new vocabulary, more general and unbiased than the ones
coming from different research communities. In particular, in
this paper, we aim to capture functional, architectural, and
correctness guarantees concepts of a data-intensive system.
Furthermore, using our model, we aim to make more precise
the comparison among data-intensive systems, also the ones
coming from different domains. It may be useful to understand
which are the overlaps in terms of features provided or
guarantees ensured across distinct areas.

The remainder of the paper is organized as follows. In
Section II, we introduce our unifying model for data-intensive
systems, with definitions of each component and of some clas-
sification criteria that can be used to understand the differences
and the similarities of the systems. In Section III, we present a
taxonomy of data-intensive systems taken from both industry
and research. The taxonomy is done by showing how each
system fits into our model and using the classification criteria
previously defined. We tried to include the most relevant and
representative systems. In Section IV, we discuss the results
that emerged from the taxonomy. In Section V, relation with
respect to the related work is discussed. Lastly, in Section
VI, we draw the conclusions, summarizing our work and our
contributions, and pointing out possible directions for future
work.

II. MODEL

In this section, we introduce a model to capture the key
design choices behind data-intensive systems. Fig. 1 shows
the components of this model.

The core of the data-intensive system is constituted by the
workers, which are the physical processes running the system.
Each worker may have a certain number of slots, which are the
abstraction of the computational resources. Each slot consists
of a single thread of execution. Basically, the slots aim to
model the physical cores, but with a single-threaded execution.

A data-intensive system is a system that can process and
manage large quantities of data. In this model, with data we
mean immutable information elements. Data can be exchanged
between the client and the system. The client is the principal

actor that can interact with the system, i.e. the abstraction of
the application that will make use of the system to store and
process data. To interact with the system, the client must first
send a driver program, that is a set of instructions that specifies
the computation that it desires to run on the system. Then, it
can trigger the computation sending an invocation, possibly
with some data that will be taken as input. Notice that we
consider invocations as a special type of data. For example,
a driver program could be a parametric stored procedure of
a database that supports them. Therefore, the client should
first send it and then invoke it, sending an invocation together
with the parameters needed (the input data). When the driver
program is submitted, it is received by the driver receiver
component of the system, which is responsible for receiving
driver programs and forwarding them to the program executor
component. A driver program is composed of a set of instruc-
tions, to be executed by the program executor, interleaved with
one or more jobs. A job is a parallel computation specified
by the client within the driver program that has to run on the
various workers of the system. Whenever the program executor
wants to deploy a job, it emits a logical job plan. We can
abstract this plan as a graph that specifies a sequence of steps
to follow in order to execute the job, and in which order they
should be followed. This graph is given in input to the job
optimizer component, which will build and optimize a physical
execution plan starting from the logical one. This physical
execution plan is the physical job plan. As an example, this
flow can be found in many DBMS, where the logical and the
physical job plans are the logical and physical query plans,
and the job optimizer is the query optimizer.

The vertices of the physical job plan are called tasks. A task
is a set of instructions that has to be executed by a slot. To
be executed, a task has first to be installed, and then it can
be invoked. Possibly, the invocation of a task may carry some
additional data. Some tasks can install other tasks during their
execution.

The physical job plan is finally passed to the task scheduler,
which forwards the installations to the various workers, trying
to optimize performance as much as possible, for example
taking into consideration data locality or trying to balance the
overall load on the workers.

Concerning data locality, the data bus plays a key role.
Indeed, the data bus is the component through which every
exchange of immutable information (i.e. invocations and data)
happens. It can be seen as a very generic abstraction of a
communication channel. The data bus can also be persistent
if it can store data during the communication. If that is the
case, there may be data locality optimizations to take.

At the moment of the invocation, a task is executed, and
after the execution, it can provide data in output to a client
(that can be the same client that submitted the program or
another one), communicate with other tasks by exchanging
invocations or data through the data bus, or return some
feedback information. The last-mentioned behaviour is usually
present only in the case of iterations or periodic job. The
former happens when a job that is described in the program
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Fig. 1. Abstract model of a data-intensive system.

inside an iterative loop, and the loop condition is dependent
on the job execution’s result. Because of this, the feedback
information must go back to the program executor, which will
then evaluate if the condition is satisfied or not, and choose
which job to launch next accordingly. A typical example of this
is a machine learning program, which will launch many times
a parallel computation and, at the end of each computation,
will evaluate some objective function before deciding what to
do for the next iteration of the loop. The latter instead is a job
that is specified to be periodically executed, with no additional
conditions. Therefore, the feedback information must return
to the scheduler to acknowledge the execution of the job. The
scheduler then can send again the task installation for that
job, in case it wants to change the task deployment, based
on the clock information. In the periodic job scenario, the
clock connected to the data receiver is in charge of sending
periodically the invocations for that job.

A system may also maintain a shared state, which is a
set of mutable information elements, which represents the
evolving state of the system during the executions of the
various programs. These mutable information elements are
called state elements. This abstraction is fundamental to model
those systems which have mutable information to manage. For
instance, in a DBMS, the set of stored information elements
is shared and mutable. Therefore, it is a shared state.

Operators can be declared as stateful within the driver
program, and the tasks corresponding to a stateful operator
will maintain a state information in their task state. This is
the norm in the stream processing domain, where there are
operators that can maintain windows across invocations.

The client can decide which part of the program specify
as a transaction. We model this possibility with two prim-
itives that a client can insert in a program, that are ”begin
transaction” and ”end transaction”. The part of the program
included between these two primitives will be the transaction.

A transaction is a part of the program for which the client
desires transactional guarantees [18] to hold. In the next
section, we will provide further detail on those guarantees.

The arrival of an invocation in input of a transaction
causes the transaction to begin the execution. We refer to
the execution that starts after a transaction invocation as a
transaction execution (TE) [22]. Transaction executions can
either succeed (commit) or fail (abort). An abort can be one
of two types:

1) System-induced aborts, when the system decides to abort
the TE, for instance because of a node failure

2) Logic-induced aborts, when the transaction logic forces
an abort (calling the primitive ”abort transaction”) in
some particular cases, for instance if the balance of a
bank account would be below zero

The fundamental difference between the two kinds of abort is
that the first is non-deterministic, meaning that if two nodes
execute the same transaction starting from the same state, they
can end up in a different final state (because one of the two TE
may receive a system-induced abort, while the other may not),
while the second is deterministic, i.e., in absence of system-
induced aborts, if two nodes execute the same transaction
starting from the same state, they can only end up in the same
final state, because either both committed or both aborted [30],
[17]. Hence, we will use system-induced abort (respectively,
logic-induced abort) and non-deterministic abort (respectively,
deterministic abort) as synonyms.

A transaction can be defined as deterministic if, given
multiple workers starting from the same state, the result of the
transaction execution is the same among all of them [29]. This
means also that non-deterministic events (such as hardware
failures) can not cause a transaction abort anymore, because,
otherwise, the deterministic property defined before does not
hold. Instead, the failed worker will wait for its recovery
and replay the input starting from its failure (how to do it



depends on the particular implementation), and, because of
determinism, the state will be the same as if there would have
been no failures. In this paper, with deterministic, we also
mean that the transaction is statically analyzable. This means
that the elements that the transaction wants to read and write
are known before its execution.

Furthermore, transactions can be:

1) Single-slot, if the scheduler manage to dispatch the tasks
composing the transaction’s physical plan into a single
slot

2) One-shot, if the scheduler manage to dispatch the tasks
composing the transaction’s physical plan such that they
are all concurrent

3) General, if it is neither single-slot nor one-shot

These properties will be exploited for correctness purposes
that we will describe in further detail later.

Classification criteria

Here we provide some additional definitions based on
our model, which we will use as classification criteria to
characterize the systems under analysis.

Functional concepts
Invocations. Systems can adopt three different approaches

to handle invocations: pull, push, or periodic. With the pull ap-
proach, tasks are executed by explicitly sending an invocation
to it. On the contrary, with the push approach, invocations
are implicitly sent with the input data. Periodic processing,
instead, means that the execution is periodically invoked by
the internal clock, without any external invocation.

Shared state. A client can make different uses of the shared
state. For example, it may take a decision based on the
evolving value of the state of the system. This opportunity can
be relevant in some use cases, but useless in others. Indeed,
not all the data-intensive systems maintain a shared state.
Therefore, the presence of the shared state is a classification
criterion.

Task state. Similar to the shared state, not all systems
provide primitives for declaring stateful operators. Therefore,
such systems do not support task states.

Job scheduling. The program executor can behave in two
ways:

• When it receives the program, it will wait until an
invocation of that program is received. Upon program
invocation, it starts executing the program and, when it
finds a job during the computation, it will emit the job;

• First, it parses the program, it sends forth all the jobs
found in it, and finally, it waits for an invocation that
will trigger the actual program execution.

In the former scenario, we say that the system adopts
dynamic job scheduling, whereas, in the latter, we say job
scheduling is static.

Job optimizer. Some systems do not have a job optimizer,
while others do. Hence, the presence of a job optimizer is a
criterion for classification.

Iterations. Similarly, support for iterations is not provided
by every system. Thus, we use this feature as a classification
criterion.

State and data management
Persistent data bus. All the systems have a data bus, which

is necessary for data exchange, but only some of them have a
persistent bus.

Replication. Replication means that the same information
elements are stored on multiple workers, possibly on differ-
ent nodes. In replication, we have the concepts of leader
replica and its follower replicas. A leader replica is a set
of information elements stored into a worker and each of its
follower replicas is an exact copy of the leader replica, stored
in other workers, possibly on different nodes. Replication can
be classified on how it handles leader and follower replicas.
The two macro-categories of replication are active replication
and passive replication. Active replication can be single leader,
multi-leader, or leaderless. In single-leader mode, every ele-
ment is present into exactly one leader replica, while it can
be replicated into multiple follower replicas. The worker that
stores the leader replica is called leader for those elements,
while the others are followers. If a client wants to write a state
element, it must send its request to the leader for that element,
which will then propagate the information to the followers.
For a read request instead, a client can send a request to
any worker that has the element requested, even if it is a
follower for that element. Multi-leader is like single-leader,
but there is more than one leader for every state element. If
this is the case, it means that two clients can update the same
element present in two different leaders, possibly leading to
inconsistency. Leaderless replication means that the client can
read and write an element from every worker of the system,
therefore all the replicas are leader replicas. Also with this
replication strategy there can be inconsistencies.

Partitioning. Partitioning means breaking a set of informa-
tion elements into multiple non-overlapping partitions, to be
distributed on the various workers. In principle, with simple
partitioning, every element belongs to exactly one partition.
There are two basic techniques to partition: random or based
on the content. For instance, a content-based partitioning
policy for an online store could be to partition by the customer,
thus ensuring that all the information related to a single
customer is stored within the same worker.

Correctness guarantees
Atomicity. The atomicity property ensures that either all of

the effects of a transaction execution are visible or none of
them is visible. The most popular protocol for implementing
atomicity is Two Phase Commit (2PC) [8]. Some systems
prefer to use partial implementations of an algorithm that guar-
antees atomicity relying on some preconditions whenever they
hold, because 2PC may decrease the throughput and increase
latency. For example, if the scheduling achieves to create a
single-slot transaction, the system does not need a complex
commitment algorithm like 2PC, because the transaction can
not execute in parallel, due to the slot’s characteristics. Indeed,
in this case coordination is not needed at all. Significant



simplifications arise also when the transaction is deterministic.
If such is the case, the transaction will not abort for non-
determinstic reasons. This can result in a simplification of a
commitment algorithm because the algorithm does not need
to check if any of the nodes aborted non-deterministically.
Relying solely on logic-induced aborts has also disadvantages
though. The main one is the fact that a worker can not use
aborts to cope with overload on its resources, and this could
cause the system to struggle in some cases of heavy workloads
[25].

Consistency constraints. Clients can specify a predicate P
on the values of state elements that must be true after the
execution of a transaction. If it is not true, the transaction
must be aborted and none of its effects should be visible. The
implementation of these constraints is strictly related with the
implementation of the atomicity guarantee. Indeed, systems
that offer those constraints usually implement them in this
way: first, execute the transaction as it is, then, before the
commitment protocol, check if the constraints are respected.
If not, abort the transaction. Otherwise, it can commit and
continue the commitment protocol.

Isolation. Isolation (also called concurrency control) is a
property that can have different levels. Many studies formally
defined the various levels of isolation in literature [6], [1],
[5]. In our analysis, the most relevant is serializability, which
ensures that the effects of a set of concurrent transaction
executions are the same as if all the transactions were executed
in some sequential order. Here are presented some of the
usually recurring implementation of isolation levels:

• Scheduling
If the scheduler emits single-slot plans for concurrent
transactions, and if they are forwarded to the same slot,
then the result is serializable by definition.

• Two-Phase Locking
Two-phase locking (2PL) is a lock-based approach, where
locks can be shared, if the requesting transaction wants
to read the element, or exclusive, if the requesting trans-
action wants also to write the element [7].

• Timestamp ordering
The timestamp ordering (TS) technique attaches times-
tamps to transactions and based on them decides in which
order execute the transactions. In particular, transactions
are required to execute conflicting operations (read and
write, or write and write, on the same element) in times-
tamp order. If the order is violated, the older transaction
is aborted and re-executed with a new (bigger) timestamp.

• Deterministic ordering
The basic idea of this concurrency control method is to
first decide in which order execute a set of transaction
invocation (agreement on the input) and then execute the
transactions with a schedule that is serial equivalent to
the agreed order. This algorithm, as well as its advantages
and disadvantages, are described in further detail in [25].

Durability. The guarantee of durability ensures that the
effects of a committed transaction execution will not be lost,

also in case of failures. Essentially, the durability transactional
guarantee means that there must be some sort of fault tolerance
mechanism that is triggered by the transaction commit.

Fault tolerance. This guarantee ensures that the information
contained in the system is stored into a stable storage and
therefore will not be lost in the case of failures. To provide
fault tolerance, the typical approaches involve logging. In
particular, two different techniques of logging, widely used in
the data-intensive tools’ domain, are Write-ahead log (WAL)
[23] and Command log (CL) [21]. A recovery strategy based
only on logging is not feasible in practice, because eventually
the log will explode. Therefore, usually it is adopted together
with the snapshot technique [12]. A snapshot consists of
saving a consistent state of the system on a stable storage,
from which it is easier to start the command log recovery.
Another way to provide fault tolerance is to use replication,
that was already described before.

III. SYSTEMS

A. VoltDB

Functional concepts
VoltDB [28] is a database management system. It is the

commercial product derived by the H-Store research prototype
[27], [19]. VoltDB is relational, so the information that it stores
is in the form of tables. The set of stored tables represents its
shared state. Clients must use stored procedures to interact
with the system. A stored procedure corresponds to the driver
program concept of our model, and VoltDB requires it to be a
mix of Java code and SQL queries. The client needs to send
the compiled version of the procedure (in Jar form) to the
driver receiver of the system, that in VoltDB is any node of the
system. Once the system has received the stored procedure, it
can parse it, create the physical plan through its optimizer, and
deploy the tasks on the workers (static scheduling). After that,
the client will be able to call it, following the pull approach.
Iterations are supported by simply writing SQL queries inside
loops. VoltDB does not provide support for task states.

State and data management
VoltDB supports both partitioning and replication. Replica-

tion can be active, single-leader or leaderless. The communica-
tion among the workers is done through the network, therefore
the data bus is not persistent.

Correctness guarantees
VoltDB classifies transactions in three kinds:
1) Single-partition (i.e. single-slot, since VoltDB workers

always have one slot)
2) One-shot
3) General
Based on this classification, it applies different optimiza-

tions and implementations to achieve guarantees. For instance,
atomicity for a single-partition transaction is provided by the
fact that every worker has a single slot, therefore the execution
of that transaction must be sequential and until completion.
For a one-shot read-only transaction, it does not need any
commitment protocol. If the transaction can not be classified



Invocations Shared state Task state Job optimizer Iterations
VoltDB Pull/push Yes No Yes Yes
Calvin Pull Yes No Yes No
StreamDB Push Yes No Yes No
Spark Pull No No Yes Yes
Flink Push No Yes Yes Yes
Spark Streaming Periodic No Yes Yes No
TSpoon Push No Yes Yes Yes
S-Store Pull/push Yes Yes Yes Yes

TABLE I
FUNCTIONAL CONCEPTS.

Persistent data bus Replication Partitioning

VoltDB No Active, single-leader
Leaderless Content

Calvin No Active, leaderless Content
StreamDB No Active, single-leader Content
Spark Yes Active, leaderless Content
Flink No No Content
Spark Streaming Yes Active, leaderless Content
TSpoon No No Content

S-Store No Active, single-leader
Leaderless Content

TABLE II
STATE AND DATA MANAGEMENT.

Atomicity Consistency Isolation Durability Fault tolerance
Impl. Precond. Impl. Precond. Impl. Precond. Impl. Precond. Impl. Precond.

VoltDB Scheduling Single-slot/One-shot RO transaction Check before commit / Deterministic Det. transactions FT before commit / CL+Snapshot /
2PC / Replication /

Calvin Deterministic No system-induced aborts Check before commit / Deterministic Det. transactions FT before commit / CL+Snapshot /
Replication /

StreamDB Scheduling Single-slot transaction No / TS / No / No /
Spark No / No / No / No / Replication /

Flink Scheduling Single-slot transaction No / Scheduling Single-slot transactions No / Snapshot Client sends
missing data

Spark Streaming Scheduling Single-slot transaction No / Scheduling Single-slot transactions No / Snapshot Client sends
missing data

TSpoon 2PC / Check before commit Check only on
one task state

2PL
TS

/
/ FT before commit / WAL /

S-Store Scheduling Single-slot/One-shot RO transaction Check before commit / Deterministic Det. transactions FT before commit / CL+Snapshot /
2PC / Replication /

TABLE III
CORRECTNESS GUARANTEES.

into one of these two kinds, VoltDB uses standard 2PC.
Consistency constraints can easily be implemented inserting
a check inside the stored procedure. Regarding isolation,
VoltDB uses the deterministic ordering approach to achieve
serializability for multi-partition transactions. The order of
execution of the transactions is decided by a worker that acts as
a coordinator. Fault tolerance is achieved via command logging
and periodic snapshotting. The durability of transactions is
guaranteed using the fault tolerance mechanism defined before
at the end of the commitment protocol.

B. Calvin
Functional concepts
Calvin is a distributed DBMS research prototype, that

was originally designed to be a pre-processing layer for
transactional guarantees and replication management [30].
Calvin stores a set of key-value pairs as its shared state.
The driver program submitted by the client is a transaction.
Jobs (i.e. queries) will be dynamically scheduled during the
execution of a transaction. As in many database systems, the
adopted approach is the pull one. Jobs are optimized via a
query optimizer. A transaction can be submitted to any node.
All transactions in Calvin must be deterministic. This is a

fundamental assumption that Calvin will use to ensure multiple
guarantees and optimizations. For this reason, iterations, which
would make a transaction no more statically analyzable, are
not supported. Task states are not supported.

State and data management
Calvin adopts replication and partitioning. Partitioning is

based on the key of the elements. Replication is adopted at
system-level, i.e. all the partitions are replicated, creating what
Calvin calls different regions. A region is a set of nodes
that contains the whole shared state in their partitions. The
replication is leaderless, meaning that a client can contact
every replica for reads and writes. The data bus is the TCP
network. Hence, it is not persistent.

Correctness guarantees
Regarding atomicity, since transactions in Calvin do not

have non-deterministic aborts, Calvin uses the deterministic
protocol to ensure atomicity. Similarly, serializablity is pro-
vided with the deterministic ordering. For fault tolerance,
Calvin uses CL and snapshotting. Durability is provided using
fault tolerance mechanisms after the commit.

C. StreamDB
Functional concepts



StreamDB is a research prototype of a DBMS [13] that
borrows design concepts from the stream processing area.
Indeed, in StreamDB the processing follows the push model.
Jobs are declared as dataflow graphs and are called transaction
graphs because all jobs have transactional guarantees. Once
the t-graphs are optimized and deployed, they are ready to
process input data (static job scheduling). When a datum
arrives at the system, it may trigger a transaction graph, that
will interact with a shared relational state. No stateful tasks
are provided. Iterations inside the t-graphs are not supported.

State and data management
Partitioning is supported. Replication is provided using

strategy active, single-leader. The data bus is not persistent.
Correctness guarantees
Atomicity is provided only for single-slot transactions.

Consistency constraints and durability are not provided. Fault
tolerance is provided through replication. For isolation, it
adopts the TS protocol.

D. Spark

Functional concepts
Apache Spark is a framework for distributed batch data

processing [31]. It is inspired from the MapReduce framework
developed by Google [16] and its open-source derivation,
Hadoop. Spark offers APIs in several programming languages.
The client can use these APIs to write the driver program. Iter-
ations can be specified inside the program. Once the program
is written, the client has to send it (in a jar format) to the master
node, and the program will be executed (pull processing).
Spark will dynamically schedule and optimize jobs during the
execution. No support for state handling (neither shared nor
task) is provided.

State and data management
Before starting the processing, the client must store the data

into a distributed repository, usually a distributed file system.
In Hadoop, the Hadoop Distributed File System (HDFS) [26]
is used. The most popular option is HDFS also for Spark.
Spark uses this distributed data repository as its distributed
data bus. Hence, the data bus is persistent. HDFS supports
partitioning, based on the content of the files, and replication,
which is leaderless, since a client can add files in every node.

Correctness guarantees
Spark does not provide any ACID guarantees, due to the fact

that it does not maintain any state. Fault tolerance is provided
through HDFS replication.

E. Flink

Functional concepts
Apache Flink is a distributed stream processing platform,

optimized for low latency [11]. It supports also batch pro-
cessing as a special case of stream processing, reading one
element of the batch at a time, as if it was a stream of data. In
order to interact with the system, Flink provides different client
APIs in several programming languages. A Flink program
is mainly composed of functional primitives, that will be
compiled by the client into a dataflow graph, that represents

the desired stream processing pipeline, called dataflow graph.
This pipeline is the logical job plan, that the client can send
to the job manager process, once the program is compiled (in
the jar format). Iterations are supported through the definition
of special iteration operators. Within the program, the client
can define also stateful operators, therefore task states are
supported. On the contrary, there is no shared state in Flink.
Once the dataflow graph is received, the job manager creates
the physical job plan through the scheduler (which acts also
as the optimizer). The scheduler also forwards the tasks to
the other workers, that Flink calls task managers. The job
scheduling therefore is static. Like many stream processing
systems, Flink adopts a push approach, i.e., invocations are
implicitly sent with the input data. Therefore a client, in order
to start a computation, needs to send data to the source of the
previously deployed pipeline.

State and data management
During execution, Flink tasks communicate among each

other via TCP connections, that we represented as a non-
persistent data bus. The parallelism setting is selected by the
client, that can modify the ”parallelism.default” property in
the Flink configuration, or can set explicitly the parallelism
for each operator in the program. This setting will enable
partitioning, based on the key of the state element, over task
states. Replication is not provided.

Correctness guarantees
Flink does not give any explicit transactional primitive, but

it provides some guarantees as a consequence of its processing
model. Indeed, due to the single-threaded execution of each
task, we can say that, for such single-slot transactions, Flink
provides atomicity and isolation, with regard to the task state
accesses. Consistency constraints are not supported. For fault
tolerance of the task states, Flink uses a periodic distributed
snapshot. This means that, in the presence of a failure, Flink
requires the client to resend all the previous data starting from
the snapshot.

F. TSpoon

Functional concepts
TSpoon is a research prototype of a stream processing

system, described in [2]. It is built on top of Apache Flink,
from which it inherits most of its architectural and functional
features. The main issue that led to TSpoon development was
the missing of transactional guarantees in the field of stream
processing. The main concept is that of the transactional
subgraph (or t-graph), that is a subgraph of the dataflow graph
(logical plan) typical of Flink pipelines. This subgraph can be
defined from the client, with two constraints: t-graphs must
have only one input edge and they can not share any operator.
Once a t-graph is defined, obeying these two constraints, ACID
guarantees will be provided for the executions of that particular
subgraph. Other functional concepts are the same as in Flink.

State and data management
State and data management features are the same as in Flink.
Correctness guarantees



Guarantees are implemented using two new operators in-
troduced by TSpoon: open and close. The open operator is
created automatically at the beginning of a subgraph, and, for
every input element, it creates a data structure wrapping the el-
ement and adding some metadata useful to ensure transactional
guarantees. Additionally, the open operator stores pending
transactions. The close operator will check the outcome of
the transaction looking into the metadata and implement a
2PC protocol (with the role of the coordinator) with the tasks
(that will be the participants). During the execution, tasks will
check consistency constraints on their task state and attach
metadata accordingly. Notice that consistency constraints are
implemented and will abort the whole transaction execution if
not satisfied, but they can be defined only within the context
of a single operator state. Furthermore, during task executions,
TSpoon offers isolation, using an algorithm of choice between
2PL and TS. For fault tolerance, the open operator maintains
a write-ahead log, which is used also for durability.

G. Spark streaming

Functional concepts
Spark Streaming is a stream processing engine based on

Apache Spark. The main difference with other stream pro-
cessing engines, like Flink, is that Spark Streaming can
dynamically schedule the tasks of a job during the execution,
instead of deploying the tasks and fix them. That enables
dynamic scalability and balancing, at the cost of an increased
delay during the processing. The core programmatic abstrac-
tion is that of discretized streams (or DStreams), meaning
that streaming input elements are accumulated periodically to
create a batch, and, once the batch is collected, the classical
Spark jobs are applied. From a functional point of view, the
client always has to declare the program it wants to run, but
in the streaming setting the program is not run as soon as it is
received. Instead, a periodic approach is adopted. As usual in
the stream processing world, Spark Streaming provides stateful
operators.

State and data management
Data management features are the same as in Spark. The

task state is not replicated.
Correctness guarantees
Similarly to Flink, some guarantees are provided as a

consequence of its processing model. In particular, like it was
for Flink, for single-slot transactions, atomicity and isolation
are provided. For the fault tolerance of the task state, it adopts
a distributed snapshot approach, and, in case of failures, it will
ask the source to resend the lost data.

H. S-Store

Functional concepts
S-Store is a research prototype [22], developed with the

purpose of integrating OLTP and stream processing into one
coherent model. Its approach resembles the one of TSpoon, but
in the opposite way. Indeed, as TSpoon was built on top of
a stream processing system (Apache Flink) trying to provide
transactional guarantees, S-Store starts from an ACID DBMS

(H-Store) and tries to provide functionalities and guarantees
proper of the streaming domain. The client using S-Store
can interact with it by defining stored procedures, and later
it will be able to invoke it. All the stored procedures are
considered transactions, but S-Store distinguishes two types
of transactions: OLTP and streaming. An OLTP transaction is
a classical transaction, already provided in H-Store, that can
be invoked using a pull approach. A streaming transaction
instead is a transaction invoked by the arrival of input data
(push approach). Streaming transactions in particular can be
defined as a dataflow graph of transactions, with edges (called
streams) that indicate the precedences among them. Each of
these sub-transactions in the graph can maintain a window, a
private state belonging to the transaction, that corresponds to
our task state. S-Store maintains also a shared state, that is a set
of relational tables, similarly to H-Store. Another difference
between an OLTP transaction and a streaming one is that the
former can access only the shared state, while the latter can
possibly access windows (but only the ones of its tasks).

State and data management
The data bus is not persistent, because the communication is

done through the network. Since also VoltDB is derived from
H-Store, S-Store and VoltDB have very similar architectural
features. Indeed, S-Store supports replication (active, single-
leader or leaderless) and partitioning, as also VoltDB does.

Correctness guarantees
We will not describe in detail the isolation protocols

implemented by S-Store because it is essentially the same
of VoltDB. The same holds for atomicity and consistency
constraints implementation. Regarding durability and fault
tolerance instead, S-Store provides two different mechanisms:

1) Strong recovery
Same as the VoltDB mechanism, it uses a command log
and a periodic snapshot.

2) Weak recovery
It is similar to Flink recovery, but it does not need the
client to resend the data and the invocations, because all
the invocations are logged in the command log. Looking
in the log, the system will replay all the invocations, that
will lead to a valid state, but potentially not the same as
before the crash.

In both cases, CL and snapshot are used. However, in the
weak recovery mode, only the input data and invocations are
logged, and not the intermediate data exchange among tasks.
Furthermore, also replication is used.

IV. DISCUSSION

In this section, we will discuss the results of our analysis
on the presented systems, summarized in the Tables I, II, III.
The goal of this discussion is to show how systems, even
if designed for different workloads, can share functionalities,
deployment strategies, or guarantees implementations. It is
interesting to notice how our unifying model can describe all
the systems examined. We also notice that a lot of issues are
recurring in all data-intensive settings, and the process to solve
those issues is usually similar across workloads.



A. Functional concepts

First of all, we notice that in the database area, as well
as in the batch processing one, the pull processing approach
is the relevant one. The opposite happens in the stream
processing world. The push processing feature is present in
stream processing systems probably because, usually, they
have the requirement of low latency processing. Hence, data
must be processed as soon as it arrives, without waiting for
an additional invocation, that could be harmful to the latency.
However, there are some exceptions. StreamDB is a database,
but it supports only the push approach since it is inspired
by the stream processing architectures. VoltDB supports push
processing thanks to the materialized views support. Indeed,
maintaining a materialized view is very similar to a stream pro-
cessing problem: the view is defined, and as soon as an event
that modifies the view happens, it must be modified to keep
it consistent. Spark Streaming adopts the periodic approach
because it wants to exploit the Spark (batch) engine also in
the case of stream processing. S-Store, a hybrid system, is built
on top of H-Store, a relational DBMS. Therefore, it supports
natively pull processing. Furthermore, S-Store implements a
mechanism to support streaming transactions using H-Store’s
triggers, therefore implementing push processing. In this way,
it can handle a mixed workload.

The most relevant difference between DB and SP tools is
how they handle state information. Both have state informa-
tion, but DB systems maintain it into a shared state, while
SP systems use task states. Spark does not offer any state
management, and this represents probably its main weakness.
S-Store, instead, can provide support for both shared state and
task state.

B. State and data management

We noticed that all the analyzed systems adopt replication
and partitioning. Different techniques are used indifferently
from system to system. Spark is the only system that has a
persistent data bus, due to its usage of a distributed file system.

C. Correctness guarantees

Some systems give very little assistance for transactions.
For instance, in the streaming domain, only TSpoon provides
explicit primitives for transactional processing. TSpoon was
created as a layer on top of Flink to add transactional
guarantees to it. In other SP systems, some transactional
guarantees are implicitly provided only as a consequence
of their processing model. For example, in Flink, a task is
assigned to only one slot. Hence, the processing of its state
must be single-threaded. This implies that, in the case of
a single slot transaction, the processing of the task state is
atomic.

Concerning the database area, we notice that a similar
strategy for single slot transaction is used by every system
analyzed. Besides, some systems provide additional methods
to ensure atomicity for every type of transaction.

Regarding isolation guarantees, we can notice how imple-
mentations in most of the stream processing systems are a

consequence of the processing engine behavior. As described
before, almost all of them offer serializability only for the
transactions that involve the same single slot. This guarantee is
the consequence of the fact that, in the case of multiple single
slot transactions to the same slot, they must execute in some
serial order; therefore, the isolation level is serializability. The
only exception is TSpoon, which implemented on top of Flink
a concurrency control protocol. In the database domain, there
is an opposite trend, as the majority of them implements con-
currency control algorithm to explicitly provide serializability.

Consistency constraints are implemented in every system
that has the explicit ”abort transaction” primitive. In this case,
a simple check of the desired consistency constraints is made
within the transaction before committing. If the constraints are
not satisfied, a client can use the ”abort” primitive.

Durability, when present, is always given relying on the
fault tolerance mechanism.

Fault tolerance is provided by virtually every system con-
sidered in the analysis. The only exception is StreamDB,
which is an academic prototype and may implement it in
the future. Every system uses one of distributed snapshotting
(with optional command logging), write-ahead logging, or
replication, regardless of the category. Arguably, we can say
that a WAL is equivalent to a snapshot made after every
task execution and therefore reduce every system to two
techniques. Some SP systems may give lower importance to
fault-tolerance guarantees. For example, Spark Streaming and
Flink, by default, use only a distributed snapshot. This means
that fault tolerance is only provided if the client remembers
the data sent after the snapshot. In other words, they expect
the client to behave as a command log.

D. General remarks

First of all, we notice that a lot of workloads may require
stateful computation, and the lack of state information in Spark
can be limiting.

Also, StreamDB makes clear how the distinction between
categories sometimes is blurred. It has assumptions and archi-
tecture similar to the ones of stream processing systems, but it
also has a shared state, a property typical of database systems.
Further evidence of this is that Spark and Spark Streaming
exploit the same architecture to handle both batch and stream
processing. We also notice how this approach could potentially
be adopted by all the databases taken into consideration that
adopt a pull approach. None of them already implemented this,
but it could be future development in the database research
area.

As previously said, the most relevant difference between
stream processing systems and database systems is state man-
agement. In particular, DB systems maintain a shared state,
while SP ones use task states. This has an impact on which
functionalities a system provides to the client. For instance, if
we consider a relational database, a client can potentially write
complex queries that involve multiple tables, with filters and
joins. This is not possible in the case of streaming systems,
because task states are usually not readable from the outside.



Flink provides a queryable state, which is a task state that can
be read from a client, but it does not offer any guarantees on
the reads of such a state.

S-Store is the only to include both a shared state and task
states. In this way, it can handle mixed workloads. Hybrids
like S-Store could be a first step towards a new breed of
architectures widely used for data-intensive applications, as
opposed to complex architectures that try to connect multiple
systems. However, S-Store came from a pre-existing system
(H-Store). Instead, what we envision for the future is a new
holistic approach for designing a new data-intensive system
from scratch.

V. RELATED WORK

In this section, we will show some attempts to create a
model related to data-intensive systems. Usually, those models
focus on one specific research area (for instance, stream
processing) or aspect of a system (e.g., transactions). No one
adopts a unifying approach as our model.

In [9], the authors focused on stream processing tools.
In particular, they noticed that no existing system decou-
pled the concepts of processing engine and storage engine.
This tight coupling reduces flexibility and opportunities for
optimizations. Hence, they decided to separate the storage
manager from the stream engine, similarly to what is done
with buffer managers in the DBMSs. To do so, they defined a
formal model of a storage manager, with a set of parameters
divided in architectural, functional, and performance-related.
In particular, the paper focused on the performance-related
ones and on how they could be tuned according to different
workloads. Starting from this model, they described how they
implemented Storage Manager for Streams (SMS) and how it
could be used along with a stream processing engine.

The same authors later wrote another paper [10], where they
focused on how to integrate transactional processing and static
data sources with stream processing. First of all, they assumed
to have a hybrid system, which had features of both DBMSs
and stream processing systems. Upon this, they created a
model to define guarantees in such a scenario. This model
was called the Unified Transactional Model (UTM). In this
model, first, they declared how data incoming to a streaming
pipeline is equivalent to an invocation in the DB area, similarly
to what we did in our functional model. Then, they defined
transactional guarantees in the case of a hybrid system. In
particular, they focused on the isolation guarantee. After the
definition of UTM, they described how they implemented a
transaction manager capable of implementing the transactional
model on top of a hybrid system.

A similar model is defined in the S-Store paper [22],
which we already discussed in the previous section. Before
describing the actual implementation of S-Store, the authors
defined a transaction model for hybrid scenarios such as
the one of S-Store, i.e. when there are both shared state
and task states. First, they divided the possible transactions
into two categories: OLTP and streaming. Then, they defined
serializability in case of such a hybrid workload with both

OLTP and streaming transaction executions. Furthermore, they
also defined delivery guarantees. This model was focused
only on the guarantees and not on architectural or functional
concepts, as ours.

A model that tried to include functional aspects was the
Dataflow model by Google [3]. This was a conceptual model
that wanted to unify functional characteristics proper of the
stream processing domain. This necessity came from the fact
that, in that domain, no system provided the opportunity for
optimizations along all the dimensions of correctness, latency,
and cost. This is a consequence of the high heterogeneity in the
research area: fault-tolerance guarantees are not clearly stated
in many stream processing systems, correctness guarantees
usually are not ensured, and few systems have precise temporal
primitives. In summary, the lack of a unifying model led to
engines that dictated the semantics. Dataflow aimed at the
opposite and defined a modeling framework composed of a
windowing, a triggering, and an incremental processing model.

Another related research is [15]. In this paper, the authors
claim how complex event processing and stream processing
are two sides of the same coin and, therefore, could be unified
under the same modeling framework. They defined a long
list of models, including functional, processing, deployment,
data, language, and time characteristics. Then, they presented
a comprehensive classification of several systems present in
the literature. This research work adopts an approach that is
very similar to ours, but it is focused on a narrower research
area, such as stream processing.

VI. CONCLUSION

The goal of this paper was to examine data-intensive sys-
tems design and to understand which are the functional, ar-
chitectural, and correctness concepts that those systems share.
This analysis was done through the definition of a formal
unifying model, which was able to illustrate the similarities
and differences of data-intensive systems that arose in recent
years. To validate the model, we analyzed 8 different systems
coming from various domains, using the defined model for
comparison. We noticed that the model was able to unambigu-
ously capture recurring concepts and issues of data-intensive
systems.

Possible future work includes expanding the taxonomy with
other relevant systems, both from industry and research. Also,
the model can be extended (for example, taking into account
the physical storage of state and data). Furthermore, we
envision that in the future our model can be used as a starting
point for a new approach for designing data-intensive systems,
where the design is driven by a declarative specification of
the desired semantics. Hypothetically, it can be included in a
development platform that will help the creation and deploy-
ment of a data-intensive system. For instance, a developer may
use the unambiguous definitions of the correctness guarantees
given by our model to ask the platform to deploy a data-
intensive system that will ensure the correctness level desired.
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Snodgrass, Luis Gravano, and Ariel Fuxman, editors, Proceedings of
the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 1–12.
ACM, 2012.

[31] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster computing with working sets.
In Erich M. Nahum and Dongyan Xu, editors, 2nd USENIX Workshop
on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA,
June 22, 2010. USENIX Association, 2010.


