
A unifying modeling 
framework for data-intensive 
systems

Nicolò Felicioni



Introduction



Data-intensive meaning

● Data-intensive application: data is the primary challenge
○ Volume
○ Velocity
○ Variety

● Compute-intensive application: CPU is the bottleneck
○ Example: computer simulation software



Current problems

Existing systems usually solve specific tasks

Data-intensive applications have
heterogeneous requirements

Common practice: developers integrate
different systems with ad-hoc manually written
logic

Integration needs a deep knowledge of each
system 



Motivations for a unifying model

In this scenario, a unifying model may bring several 
contributions:

● Select the best system for the problem
at hand

● Know how to configure the systems to meet 
application requirements

● Understand common design principles
● Guide the design of a new breed of

more tightly integrated data-intensive tools



Scope

We examine systems from various areas: 
database, batch processing, stream processing, etc.

We look at the most representative
systems for each area

In total, we analyzed 16 among the most 
relevant systems in the different domains



The modeling framework



The modeling framework

Functional model

Guarantees’ 
implementation model

Deployment 
model

Guarantees model



Functional model



Functional model



Functional model



Functional model



Functional model



Functional model



Functional model



Deployment model



Guarantees model

We defined guarantees as postconditions that a client can assume being true after 
the computation

There are a lot of guarantees that are difficult to provide in a data-intensive 
environment

Synchronization (atomicity, isolation), fault tolerance, communication (delivery, 
order), consistency, etc.



Guarantees’ implementation model

Atomicity

Isolation

Fault tolerance

Replication consistency



Discussion



Functional model

● Pull vs Push vs Periodic approach
● State management
● Almost all systems have an optimizer



Functional model

● Pull vs Push vs Periodic approach
● State management
● Almost all systems have an optimizer



Functional model

● Pull vs Push vs Periodic approach
● State management
● Almost all systems have an optimizer



Functional model

● Pull vs Push vs Periodic approach
● State management
● Almost all systems have an optimizer



Deployment model

● KafkaStreams architecture is unique
● Few systems have persistent data bus

● Almost all systems have 
partitioning/replication

● VoltDB has always one slot per worker



Deployment model

● KafkaStreams architecture is unique
● Few systems have persistent data bus

● Almost all systems have 
partitioning/replication

● VoltDB has always one slot per worker 



Deployment model

● KafkaStreams architecture is unique
● Few systems have persistent data bus

● Almost all systems have 
partitioning/replication

● VoltDB has always one slot per worker



Deployment model

● KafkaStreams architecture is unique
● Few systems have persistent data bus

● Almost all systems have 
partitioning/replication

● VoltDB has always one slot per worker



Deployment model

● KafkaStreams architecture is unique
● Few systems have persistent data bus

● Almost all systems have 
partitioning/replication

● VoltDB has always one slot per worker



Guarantees and implementation model

● In general, recurring implementations used for several systems
● Among SPs, only TSpoon provides explicit support for transactions
● Some DBMSs want to provide transactional guarantees, no matter which are the 

preconditions



Guarantees and implementation model

● In general, recurring implementations used for several systems
● Among SPs, only TSpoon provides explicit support for transactions
● Some DBMSs want to provide transactional guarantees, no matter which are the 

preconditions



Guarantees and implementation model

● In general, recurring implementations used for several systems
● Among SPs, only TSpoon provides explicit support for transactions
● Some DBMSs want to provide transactional guarantees, no matter which are the 

preconditions



Guarantees and implementation model

● In general, recurring implementations used for several systems
● Among SPs, only TSpoon provides explicit support for transactions
● Some DBMSs want to provide transactional guarantees, no matter which are the 

preconditions



Guarantees and implementation model

● Fault tolerance provided almost by every considered system (with similar implementations)
● Ordering guarantees are more relevant in the streaming world



Guarantees and implementation model

● Fault tolerance provided almost by every considered system (with similar implementations)
● Ordering guarantees are more relevant in the streaming world



Guarantees and implementation model

● Fault tolerance provided almost by every considered system (with similar implementations)
● Ordering guarantees are more relevant in the streaming world



Conclusion



Conclusion

We built a modeling framework, introducing a new unbiased vocabulary

The modeling framework was used to identify overlaps and differences of 
data-intensive systems

We validated our framework through an analysis of the most relevant systems

Several research areas considered: databases, stream processing, batch 
processing, hybrids, and research prototypes



Future work

1. Expanding the taxonomy with other systems
2. Extending the framework with other models (e.g., physical)
3. Using the modeling framework for designing data-intensive systems



Thanks for the attention


