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Introduction



Data-intensive meaning

● Data-intensive application: data is the primary challenge
○ Volume
○ Velocity
○ Variety

● Compute-intensive application: CPU is the bottleneck
○ Example: computer simulation software



Current problems

Existing systems usually solve specific tasks

Data-intensive applications have
heterogeneous requirements

Common practice: developers integrate
different systems with ad-hoc manually written
logic

Integration needs a deep knowledge of each
system 



Motivations for a unifying model

In this scenario, a unifying model may bring several 
contributions:

● Select the best system for the problem
at hand

● Know how to configure the systems to meet 
application requirements

● Understand common design principles
● Guide the design of a new breed of

more tightly integrated data-intensive tools



Scope

We examine systems from various areas: 
database, batch processing, stream processing, etc.

We look at the most representative
systems for each area

In total, we analyzed 16 among the most 
relevant systems in the different domains
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Deployment model



Guarantees model

We defined guarantees as postconditions that a client can assume being true after 
the computation

There are a lot of guarantees that are difficult to provide in a data-intensive 
environment

Synchronization (atomicity, isolation), fault tolerance, communication (delivery, 
order), consistency, etc.



Guarantees’ implementation model

Atomicity

Isolation

Fault tolerance

Replication consistency



Discussion
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● Pull vs Push vs Periodic approach
● State management
● Almost all systems have an optimizer
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Conclusion

We built a modeling framework, introducing a new unbiased vocabulary

The modeling framework was used to identify overlaps and differences of 
data-intensive systems

We validated our framework through an analysis of the most relevant systems

Several research areas considered: databases, stream processing, batch 
processing, hybrids, and research prototypes



Future work

1. Expanding the taxonomy with other systems
2. Extending the framework with other models (e.g., physical)
3. Using the modeling framework for designing data-intensive systems



Thanks for the attention


