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Abstract

Automatic classificators can already detect if a video is real or manipulated.

We would like to provide human-understandable explanations for these

predictions.
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Video manipulation



https://www.youtube.com/watch?v=cQ54GDm1eL0




Video manipulation types

* Facial reenactment

* |dentity swap



Video manipulation types

* Facial reenactment

Output Video

RGB-Input

Transfer

Source

[Thies at al., “Face2Face: Real-time Face Capture and Reenactment of RGB Video”, 2016]



* |dentity swap

Video manipulation types

ORIGINAL DEEPFAKE



Deepfakes



Deepfakes: overview

Replacing the face of a targeted person A by the face of B in a video
Deep learning technique
Initially created to generate face-swapped adult contents

No paper
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REAL

Deepfakes: overview

FAKE
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Deepfakes: overview

* Why is it important to detect them?

* Why “deep™?



Deepfakes: technical background
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Deepfakes: technical background

* CNN
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Deepfakes: technical background

* Auto-encoder

Input Image
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Deepfak

* GAN

es: technical background

Real faces

Discriminator Fake

Deep Convolutional Network (DCN)
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https://www.spindox.it/en/blog/generative-adversarial-neural-networks/



Deepfakes: technical background
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* LSTM

https://www.codeproject.com/Articles/5165357/In-depth-LSTM-Implementation-using-CNTK-on-NET-pla



Deepfakes: technical background

Training

Shared encoder Decoders
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[Afchar et al., “MesoNet: a Compact Facial Video Forgery Detection Network”, 2018]



Deepfake detection methods



Detection methods

Use the flaws of the generation pipeline
* Specifically chosen features
* Purely learned features

* Temporal inconsistency

[Deepfake Detection Challenge, 2019]
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Detection

Specifically chosen features

* Affine transformations [Li and Lyul]
* Head-face poses [Yang et al.]

* Visual artifacts [Matern et al.]

* Face/head actions [Agarwal et al.]

methods

positive

REAL

(k)

negative

FAKE

(1) (m) (n)

[Tang et al., “Exposing deep fakes using inconsistent head poses”, 2019]
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Detection methods

Purely learned features
* CNN (Mesonet) [Afchar et al.]
* CNN (XceptionNet) [Rossler et al.]

* CNN + CapsNet [Nguyen et al.]

C Input 256x256x3 ) ¢

l Convolutional 16x(5x5) + RelLU
Convolutional 8x(3x3) + RelLU Batch normalisation
Batch normalisation Max pooling 4x4
Max pooling 2x2 8x8x16 l 1024 features
128x128x8 l Dropout 0.5
I Convolutional 8x(5x5) + RelLU Fully-connected 16
Batch normalisation l 16 features
Max pooling 2x2 Dropout 0.5
B4x64x8 l Fully-connected 1 ‘
I Convolutional 16x(5x5) + RelLU l 1 feature
Batch normalisation Sigmoid
Max pooling 2x2 l

32x32x16 ( Classification Result )

[Afchar et al., “MesoNet: a Compact Facial Video Forgery Detection Network”, 2018]
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Detection methods

Temporal inconsistency

Alignment

8 Face Detectio :
. C N N + LST M Cropp?n: alncln : : Manipulated/_ :
: Forward Pristine !

* Lip sync [Korshunov et al.]
* Eye blink [Li et al.]

* Frame consistency [Sabir et al.]

[Sabir et al., “Recurrent Convolutional Strategies for Face Manipulation Detection in Videos”, 2019]
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Detection methods

Can we trust these techniques in decision making processes?
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ExXplanation problem



ExXplanation problem

We want a «correct prediction for the correct reason»
Complexity-interpretabillity trade off

For images: attention maps or natural language

Why do we need it:
- |law enforcement
- Jjournalists

- dispute resolution in social media

Your video was deleted
because it has been

ﬂ detected as fake.
Why would it be fake?!

The girl in the video has 2

ﬂ lower lips.
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Explanation techniques

* Model specific

~
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mean layer output of 100 deepfake faces mean layer output of 100 real faces

[Afchar et al., “MesoNet: a Compact Facial Video Forgery Detection Network”, 2018]
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Explanation techniques
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* By design

[Nguyen et al, “Multi-task Learning For Detecting and Segmenting Manipulated Facial Images and Videos”, 2019]
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Explanation techniques

Perturbed Instances | P(tree frog)
P

0.85

P

anélly weighted
, regrisinn

0.00001
Original Image

* Black box P(tree frog) = 0.54

Explanation

LIME - https://www.oreilly.com/content/introduction-to-local-interpretable-model-agnostic-explanations-lime/
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Our research



Research goal

Investigate explainability of deepfakes

Do similar models use different features?

Black box vs. model-aware techniques

Explanation for video inputs

Using this knowledge to improve models

‘ Fake lips!

vs. .
N.n
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Research plan

Implementation of the baseline detectors
Implementation of known explanation algorithms
Investigation of extensions and improvements
Evaluation design

Results collection and analysis
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Questions?



Thank you
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