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Abstract
Automatic classificators can already detect if a video is real or manipulated.
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We would like to provide human-understandable explanations for these
predictions.

WHY?



Overview

• Video manipulation

• Deepfakes: overview & technical background

• Deepfake detection methods

• Explanation problem & techniques

• The research goal and plan
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Video manipulation
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https://www.youtube.com/watch?v=cQ54GDm1eL0 5



Video manipulation types

• Facial reenactment

• Identity swap
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Video manipulation types
• Facial reenactment

• Identity swap

[Thies at al., “Face2Face: Real-time Face Capture and Reenactment of RGB Video”, 2016]
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Video manipulation types

[Deepfake Detection Challenge, 2019]

• Facial reenactment

• Identity swap
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Deepfakes
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Deepfakes: overview

• Replacing the face of a targeted person A by the face of B in a video

• Deep learning technique

• Initially created to generate face-swapped adult contents

• No paper
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Deepfakes: overview

REAL FAKE FAKE
[Deepfake Detection Challenge, 2019] 11



Deepfakes: overview

• Why is it important to detect them?

• Why “deep”?
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Deepfakes: technical background

• DNN

• CNN

• Auto-encoder

• GAN

• LSTM
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Deepfakes: technical background

• DNN

• CNN

• Auto-encoder

• GAN

• LSTM

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 14



Deepfakes: technical background

• DNN

• CNN

• Auto-encoder

• GAN

• LSTM

https://mc.ai/auto-encoder-in-biology/ 15



Deepfakes: technical background

• DNN

• CNN

• Auto-encoder

• GAN

• LSTM

https://www.spindox.it/en/blog/generative-adversarial-neural-networks/ 16



Deepfakes: technical background

• DNN

• CNN

• Auto-encoder

• GAN

• LSTM

https://www.codeproject.com/Articles/5165357/In-depth-LSTM-Implementation-using-CNTK-on-NET-pla 17



Deepfakes: technical background

[Afchar et al., “MesoNet: a Compact Facial Video Forgery Detection Network”, 2018] 18



Deepfake detection methods
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Detection methods

Use the flaws of the generation pipeline

• Specifically chosen features

• Purely learned features

• Temporal inconsistency

[Deepfake Detection Challenge, 2019] 20



Detection methods

Specifically chosen features

• Affine transformations [Li and Lyu]

• Head-face poses [Yang et al.]

• Visual artifacts [Matern et al.]

• Face/head actions [Agarwal et al.]

[Tang et al., ‘‘Exposing deep fakes using inconsistent head poses’’, 2019]

REAL

FAKE
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Detection methods

Purely learned features

• CNN (Mesonet) [Afchar et al.]

• CNN (XceptionNet) [Rössler et al.]

• CNN + CapsNet [Nguyen et al.]

[Afchar et al., “MesoNet: a Compact Facial Video Forgery Detection Network”, 2018]
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Detection methods

Temporal inconsistency

• CNN + LSTM

• Lip sync [Korshunov et al.]

• Eye blink [Li et al.]

• Frame consistency [Sabir et al.]

[Sabir et al., ‘‘Recurrent Convolutional Strategies for Face Manipulation Detection in Videos’’, 2019]
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Detection methods

Can we trust these techniques in decision making processes?
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Explanation problem
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Explanation problem

• We want a «correct prediction for the correct reason»

• Complexity-interpretability trade off

• For images: attention maps or natural language

• Why do we need it:
- law enforcement
- journalists
- dispute resolution in social media
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Explanation techniques

• Model specific

• By design

• Black box

[Afchar et al., “MesoNet: a Compact Facial Video Forgery Detection Network”, 2018]
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Explanation techniques

• Model specific

• By design

• Black box
[Nguyen et al, “Multi-task Learning For Detecting and Segmenting Manipulated Facial Images and Videos”, 2019]
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Explanation techniques

• Model specific

• By design

• Black box

LIME - https://www.oreilly.com/content/introduction-to-local-interpretable-model-agnostic-explanations-lime/
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Our research
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Research goal

• Investigate explainability of deepfakes

• Do similar models use different features?

• Black box vs. model-aware techniques

• Explanation for video inputs

• Using this knowledge to improve models
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Fake lips!

vs.



Research plan

• Implementation of the baseline detectors

• Implementation of known explanation algorithms

• Investigation of extensions and improvements

• Evaluation design

• Results collection and analysis
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Questions?
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Thank you
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