
Politecnico di Milano • Honours Programme • March 2020 • CSE Track

Research Project Proposal: Fault mitigation
and tolerance for MPI applications

Roberto Rocco, roberto2.rocco@mail.polimi.it

1. Introduction to the problem

High-Performance Computing (HPC) is the field of computer architectures aimed at reaching the highest computa-
tion capabilities. With the evolution of technology, HPC changed too: from a single high-performance machine to a
network of communicating and collaborating computers (also called a cluster). In such a distributed environment
communication between machines plays a major role. Fault tolerance is the field of distributed computing aimed
at the design of algorithms and systems able to deal with faults. These two areas used to be very distant but, due
to the evolution of the architectures, nowadays more and more efforts are exploring the intersection of the two.

In the past fault tolerance in HPC used to be underestimated: when a single machine was used, the Mean Time
Between Failures (MTBF) was big enough to allow execution without relevant problems. The more machines are
used, however, the more the MTBF shrinks. This makes fault-tolerance a relevant topic in modern HPC because
programs are likely to encounter one fault (at least) and must be able to handle them. The topic importance is
crucial given the lack of proper fault management in the Message Passing Interface (MPI), the de-facto standard
for HPC communication, where a single fault can stop the entire execution.

The importance of the field is supported by some efforts: Schroeder and Gibson [11] have collected data at two
large high-performance computing sites, showing failure rates from 20 to more than 1000 failures per year. Future
systems will be hit by error/faults much more frequently due to their scale and complexity [3].

The main effort towards providing fault tolerance mechanisms in MPI is the User Level Failure Mitigation
(ULFM) library [2]. ULFM is a powerful tool for a programmer since it contains implementations of various useful
algorithms for fault tolerance. It’s based on the fact that the user (the programmer) knows how the application
works, so the integration is done most efficiently. ULFM is the main effort in the field and will probably be
integrated into the MPI standard in the future. Its automatic use, however, may lead to inefficient solutions.

The problem this research effort is committed to solve is the analysis of the feasibility and the performance
costs of a transparent fault-tolerance integration in data-parallel MPI applications. Transparency is core: without
the need to change the code of the MPI application, even the ones not directly dealing with fault-tolerance can
obtain benefits. This aspect is very important since many HPC applications are well-tested and any change would
need a lot of time to obtain the same assurances. Moreover, the restriction toward data-parallel applications
should allow a more specific analysis that can ignore many difficult parts of a generic fault-tolerance analysis. The
analysis can use ULFM as a starting point, exploiting all the facilities it provides.

The importance of such an analysis comes also from the diffusion of data-parallel applications in HPC due to
their intrinsic scalability and compatibility with the upcoming exascale infrastructures. These applications are
usually also called embarassingly parallel due to the simplicity of the parallel architecture they exploit.

2. Main related works

Few efforts focused on the transparent introduction of fault tolerance in MPI applications: most of the efforts are
towards extensions of the MPI standard rather than changing it. This is mainly caused by the fact that the most
used technique for implementing fault-tolerance (checkpoint and restart, C/R) prefers application knowledge:
without it, the approach is a lot less efficient in terms of memory usage and consequently time needed. By
coupling this with the fact that extending the standard is easier and more retro-compatible than changing it, it’s

1



Politecnico di Milano • Honours Programme • March 2020 • CSE Track

easy to see the reasons why the vast majority of the efforts tend to adopt a more intrusive approach ([8] [12] [9]
[6]).

Some efforts tried using different approaches than C/R: Algorithm-Based Fault Tolerance (ABFT) [4] is one
of the oldest approaches, but it’s strictly application-specific and cannot be applied systematically; log-based
and intercommunicator-based solutions were considered too but received few attentions due to their intrinsic
scalability issues.

Some other efforts followed a more transparent approach, analyzing the possibility to change the behavior of
the MPI calls to introduce fault tolerance ([1] [5]). These analyses had to tackle problems arising from the lack of
knowledge of the running application and usually show a loss of performance when compared to a more intrusive
approach. Managing to find the correct spot in the trade-off between intrusiveness and transparency may show
possible gains both in terms of performance and reusability. A deeper analysis and classification of the main
related works can be seen in [10].

3. Research plan

The research process will be split into three macro-phases: prelude to research, actual analyses and result
evaluation and refinement.

The first one will provide all the knowledge that will be needed in the next phases: it includes the analysis of
the state of the art, the definition of the problem and some experiments to practice with the tools that will be used
(like ULFM). Most of it has already been completed.

The second macro-phase is the main part of the analysis, where various approaches are considered. It can be
further divided into four phases:

• Algorithm design: in this phase, many problems that may arise during the future analyses are arisen and
solved via the definition of various algorithms. Typical problems are the retrieval of information in an
unstable or partial communicator, the routing of the communication in a multi-communicator approach,
the approach to checkpoint and restart. The output of this step will be a series of algorithms that can be
implemented in future phases.

• Direct mitigation: in this phase, the first approach is considered. The aim is to allow an application to
continue its execution despite the presence of faults, realizing what is generally called graceful degradation. All
the processes of the application will have to participate in the repair MPI communication network, but the
operation must be completed transparently. The output of the phase will be a tool having the functionalities
explored in the analysis that can be tested to deeply consider the impact in terms of performance. The
phase includes functional testing and performance testing to evaluate the quality of the tool produced and
to properly optimize it.

• Hierarchical mitigation: in [7], it was pointed out that a problem of ULFM is that every process has to
participate in the recovery process and it didn’t scale as well as the rest of the library. The effort explored
different solutions to the problem but decided that they weren’t successful and moved away from ULFM.
In this phase, the same problem is tackled but from a different perspective: assuming that the recovery
process doesn’t scale well, we split the underlying communication in sub-networks so that a failure is further
isolated. This approach exposes various challenges, like the creation of an efficient routing system for
inter-sub-networks communication and the masking of the underlying infrastructure to the application,
since it expects a compact network like in the previous approach. As in the previous phase, the output of
the phase will be a tool having such functionalities (graceful degradation and non-global repair) and will
contain functional and performance testing.

• C/R fault tolerance: in this phase, the focus is towards recovery rather than graceful degradation. Rather
than continuing execution upon fault presence, the faulty process is restored from a previously saved
checkpoint. The main challenges of this phase are checkpoint saving, checkpoint restore and dynamic

2



Politecnico di Milano • Honours Programme • March 2020 • CSE Track

process management, all done transparently. Also in this phase, a tool will be produced and testing will be
performed.

The last macro-phase will cover all of the comparison tests, evaluating the goodness of the previous analyses.
It will be split into two phases:

• Performance comparison: in this phase, results from the tests are compared. Solutions produced by other
efforts are analyzed too, to find optimal configurations with various applications and environments.

• Paper writing: in this phase, all the results obtained are synthesized in the final document written in the
form of a scientific paper. This phase includes all the graph creation and data visualization steps.

The nature of the research is hybrid since it involves both the creation of tools and the evaluation of their
performance: the latter is core since performance is the primary goal of any HPC application. The Gantt
diagram provided in Figure 1 shows an approximate timeline of the project. It shall be noted that the timing
overlaps between the various phases are mainly due to the reuse of some methodologies between the approaches.
The project will be evaluated based on the reliability improvements it’s able to provide, on the results of the
performance tests and the quality of the produced paper.

2019 2020

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

State of the Art analysis

Problem definition

Tool practice

Algorithm design

Direct mitigation

Implementation

Functional testing

Performance testing

Hierarchical mitigation

Implementation

Functional testing

Performance testing

C/r fault tolerance

Implementation

Functional testing

Performance testing

Performance comparison

Paper writing

Figure 1: Gantt diagram of the research project

3



Politecnico di Milano • Honours Programme • March 2020 • CSE Track

References

[1] Adam, J., Besnard, J.-B., Malony, A. D., Shende, S., Pérache, M., Carribault, P., and Jaeger, J. Transparent
high-speed network checkpoint/restart in mpi. In Proceedings of the 25th European MPI Users’ Group Meeting
(2018), pp. 1–11.

[2] Bland, W., Bouteiller, A., Herault, T., Bosilca, G., and Dongarra, J. Post-failure recovery of mpi
communication capability: Design and rationale. The International Journal of High Performance Computing
Applications 27, 3 (2013), 244–254.

[3] Cappello, F. Fault tolerance in petascale/exascale systems: Current knowledge, challenges and research
opportunities. The International Journal of High Performance Computing Applications 23, 3 (2009), 212–226.

[4] Du, P., Bouteiller, A., Bosilca, G., Herault, T., and Dongarra, J. Algorithm-based fault tolerance for
dense matrix factorizations. Acm sigplan notices 47, 8 (2012), 225–234.

[5] Fagg, G. E., Bukovsky, A., and Dongarra, J. J. Harness and fault tolerant mpi. Parallel Computing 27, 11
(2001), 1479–1495.

[6] Gamell, M., Katz, D. S., Kolla, H., Chen, J., Klasky, S., and Parashar, M. Exploring automatic, online
failure recovery for scientific applications at extreme scales. In SC’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (2014), IEEE, pp. 895–906.

[7] Gamell, M., Teranishi, K., Heroux, M. A., Mayo, J., Kolla, H., Chen, J., and Parashar, M. Local recovery
and failure masking for stencil-based applications at extreme scales. In SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis (2015), IEEE, pp. 1–12.

[8] Losada, N., Bautista-Gomez, L., Keller, K., and Unsal, O. Towards ad hoc recovery for soft errors. In
2018 IEEE/ACM 8th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS) (2018), IEEE, pp. 1–10.

[9] Losada, N., Cores, I., Martín, M. J., and González, P. Resilient mpi applications using an application-level
checkpointing framework and ulfm. The Journal of Supercomputing 73, 1 (2017), 100–113.

[10] Rocco, R. State of the art on: Fault-tolerant mpi.

[11] Schroeder, B., and Gibson, G. A large-scale study of failures in high-performance computing systems. IEEE
transactions on Dependable and Secure Computing 7, 4 (2009), 337–350.

[12] Teranishi, K., and Heroux, M. A. Toward local failure local recovery resilience model using mpi-ulfm. In
Proceedings of the 21st european mpi users’ group meeting (2014), pp. 51–56.

4


	Introduction to the problem
	Main related works
	Research plan

