Research Project Proposal:
Fault mitigation

and tolerance for MPI applications

Roberto Rocco
roberto2.rocco@mail.polimi.it
CSE Track

(il B | i, 5
P e VVISNVOUOUVURY . > ! < .r' W "\‘"::_‘ L ‘,;;')I.'
‘é’(ﬁ'g "04’;(9 Po L l T E C N l C O 3% PROGRAMME - '.L;’ I Y ¢
1}1’5 Q? ‘(» ‘Tan® “ | (=1 . "\r,‘ [\‘:.. }1
L >y \ H o 4
MILANO 1863 > 1 1 "W\

L

in Information Tech;idlogh)‘/

Overview

Introduction to the research topics
Problem analysis

Previous efforts

Proposed approaches

Evaluation of the research

High Performance Computing

* Fileld of computer architectures aimed at reaching the highest computation
capabilities.

* Performance Is core, no trade-offs with power consumption, space, costs.

* Continuous evolution.

Moore's Law

Moore’s Law — The number of transistors on integrated circuit chips (1971-2018) Ourivorld
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. e

® I h e n u I I l b e r Of tran S I StO rS This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
linked to Moore's law.
. t d . h - . | I 50,000,000,000
p p y y 1,000,000,000
months o

100,000,000 s 4 Prasoot
50,000,000 et d g @ ¥ SBaon Qhon

10,000,000,000
5,000,000,000

iU 0

on Nehatem-EXa
CO Alzo 0 3.";
SIEfy DO ’ Qu -,‘ >
) : \ ’\uwl '8 0 ° g.{f‘:: 0 R

Apple A7 (dual-core ARMEB4

§ n il Mobite D Pentium Il Tualatin
Pantium || Mobile Dixon 28 Pricta)
(@] AMD K7 Pentium Il Coppermine 0/\“ V1 Conex-A
o AMD K& ﬁ : ;
—
T . - & 19000,00 R 0t
cene antium Pro, entiuh
@ 3 5,000,000 ® Saman
% Pentiumg, «? K5
) = O
}_ oA-110

Intel BD486 0
L2 4000

1,000,000

define evolution of computation

Motorola 68020 ® o

DEC WHI

100,000 I P A

capabilities over the years.

) QARM 2
4 O 1

1O.OOO T™S 1000
5,000 Intel 8008

A Ill ll O sV X A0 R & b oD DD NP DRO DI ® DO X oD
p y SIS FPFFPFFEEFELTELCELSETLSE S S S

\ P

n
Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)
The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic. Licensed under CC-BY-SA by the author Max Roser.

Moore's Law

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance

(SpecINT x 10°)
Frequency (MHZz)

Typical Power
(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Parallelization

1 Flop/s = 1 floating point operation per second;

From single core
Intel Pentium 4 - 1 core -~3 GFlop/s (f = 3GHz)

Multi cores In the same CPU chip
Intel 19 9980XE —-18 cores -~5-10 TFlop/s
Intel Xeon PHI 7290 —72 cores —3 TFlop/s (f = 1.5-1.7 GHz)

Multi computer (clusters)
Summit —IBM -2,397,824 cores —200,794 TFlop/s

An example

Exascalate4Cov: systematic analysis of proteins that allow virus
replication to virtually test pharmaceutical molecules to stop virus
propagation.

Born from a collaboration between 18 research centers (including PoliMi)
In 7 different nations.

Speeds up validation steps, earlier drug production.

On a normal computer it would take 4 months per protein; database
contains half billion of them.

The HPC realization Is able to evaluate 3 million proteins per second.

Communication

* Running code on multiple computers requires communication:

Data exchange
Code exchange
Coordination

* Message Passing Interface (MPI) Is the de-facto standard for intra-process
communication in HPC environment.

* Rather simple w.r.t. other communication middleware: no underlying
framework, just library.

MPI| basics

MPI COMM_ WORLD 1ode0l CLUSTER

-~ | CPU O
* MPI communication is based on process D {rank oy

communicators Neruo |7
node03
* Each process within a CPU 0
communicator has a rank o
.| CPUO

* Ranks go from O to size-1

CPU 1

Process 0O

send

MPI| communication

CPU 2

Process 1

receijve

* Point to point

* Collective

FO
P
P2
F3

FO
P
P2
F3

FO
P
P2
F3

Fd
P
P2
F3

A

D] |W (] I

Al

A

B0

B

B2

B3

Broadcast

Scatter

—

Gather

—

-

All gather

All to All

—

GO

G

Dd

D

D2

—

FO
P
F2
F3

FO
P
F2
F3

FO
P
F2
F3

PO
P
P2
P3

(||| || 1>

D[|| I

([2|2 || 2>
(] W

Ca | Ca[C||C

S R I I O I O

Al

B

D

&

B2

D2

5

B3

The problem

* Predefined error handlers:
|[default] causes the program to
abort on all executing processes,;

* MPI provides communication with | [other] has no effect other than
good performance but lacks returning the error code to the

features. USET.

* Many features introduced during |* After an error Is detected, the

the years state of MPI Is undefined. [The
standard] does not necessarily
* Fault tolerance is still missing. allow the user to continue to use

MPI after an error Is detected.

* MPI 3.1 standard

The problem causes

* The most important MPI| programs are well tested.

* A single fault can stop the entire execution, unlikely to happen
even If they do, computation can restart from the beginning.

* So why loose performance to bother with fault tolerance?

What Is missing

We can model a cluster as a collection of components connected In series,
since a single failure can stop the entire job.

Let’'s suppose each processor core has a MTTF of a century (876000 h).

Summit cluster has 2,397,824 cores, the MTTF of the cluster Is

MTTF 876000 h

— = U. ~ 21]
n cores 2397824 0.365 1 i

From this value we can compute other metrics.

Reliability analysis

* R(t): probabillity that the system will
operate correctly in a specified

operating environment up until time t.
1

R(t): P(no faults in [0,t]) = e MITF'

* Plotting the curve we get the graph on
the right.

* The probability of terminating
execution of an application requiring t
minutes to complete without faults Is
equal to R(t).

0.8

~ .
T~
\\

‘R

————

40

60

t [min)

30

100

Reliability analysis

If a program needs 20 minutes to
complete, it will have to be run
/r20) = /04 = 2.5 times on average;

If a program needs an hour to
complete, it will have to be run
R0y = Y0057 = 17.54 times on

average;

Exascalate4Cov would need about 46

hours to search In the entire database:

about 3.5*10e58 times on average

It's easy to see that faults are the
bottleneck of the system.

.‘\‘
T~
\\

—K

————

40

60

t [min)

80

100

First solution: C/R

RESTART THE RESTART FROM
OMPUTATION LAST CHECKPOINT

Better solution

|-etfatit-stop-the program
Let the program handle the fault and continue its execution past It.

Many advantages, but harder to implement: needs communication and
coordination between the nodes.

Many efforts tried to solve the problem this way.

What Is needed

* What can be useful to program for introducing fault tolerance?
* Get which processes falled;
* Propagate errors on the network;
* Eliminate faulty processes from the network;
* Agreement algorithm.

* User Level Failure Mitigation (ULFM) provides all of these.

ULFM

* Helps with fault tolerance, doesn’'t implement it.
* |t's focused toward user level usage, not system level.

* Many efforts based on It to create automatic tools
Fenix
CPPC

Comm

OOOOO

!

Fenix

(inter)Comm

-

(intra)Comm

loYo¥e)

~

(intra)Comm

L@@J

detects process failure
l (merge)
Comm e
DOROR oy
| J QOOOO
(revoke) . /
r invalidate comrr:umcator \\ . (send/recv)
Comm , :
OAROX N s
l (shrink) L (split) J
- \ reassign rank #
Comm (spawn) r \

loo)e)

Fig. 1.

loJoJe)olo]

Comm

Communicator recovery in Fenix by spawning new processes. The

recovery process when using a process pool is similar.

CPPC

Recovery line i

Recovery line i+1

Shrinking global comm

C

Re-spawning failed processes

Reconstruction of the global c

1\
=

GoBack
(RECO0) ‘ﬁ\'ﬁ

GoBack

ommz

\.

{ '

@Checkpoint taken ‘ Failure

> Message Failure detection Revoke communicators

J

Figure 1. Global recovery strategy.

Weak points

1. All processes must collaborate in
the recovery process, even non-
faulty ones;

. Both need few changes in the
code In order to be functional:
recovery Is performed by loading &
checkpoint, but the user
(programmer) needs to choose
when and what Is saved;

. All process restart from last
checkpoint, even non-faulty ones
(global recovery)

Recovery line i

f‘ a
o . :
| ~ : .
-~ . * %
v I >
o ‘e
- - - se % :
. .
‘ LR
>
* i 4 ' L
'
.

Recovery line i+1

)

GoBack

SSes ¢
s
(@)
al comm
/
-
7 A
2
\ J

g, ": (RECO)
Jam /\ o = ¥
‘ = o =2 , o
(g\ = °0 | GoBack
g o 8 < | (RECO) \g\"
y . r— o (- C)/
: D = ' 4
. O O © X O
4 @ 2 M =1 & , >
i 4 ! 3 = .2 | GoBack
5'," ’ = £ = | (RECO0) <
. % . A % 8 ?C/‘
@ ’ \E/W -]
e 1 o 4
o ! | | 2 & 8
. o7

------- » Message Failure detection Revoke communicators

J

Figure 1. Global recovery strategy.

Weak point analysis

* - First: ULFM heritage

* - Second: application-aware approach, achieve fault tolerance without
loosing too much performance.

* - Third: solved In a further effort
(in Fenix ULFM wasn’t used because of the first weak point).

Inter-layer communication

Explicit communication * Implicit communication

Requires changes of code (Fenix & * Fault Tolerance layer operates
CPPC way) assuming the application behaves in a
certain way

Viable but sub-optimal

* No code changes -> Transparency
Is there any alternative?

* FT layer Is application-aware

not portable

* FT layer Is characteristic-aware
some degree of portability

Data parallelism

Focus on the distribution of the data
across different nodes, which will
operate on it in parallel.

Problem Data Set

Good scaling, exascale ready

/ | \
/ l | \
L | \
Almost no communication between | «
the processes.
The absence of communication IS
exploitable. task 0 task 1 task 2 task 3

Even further, a failure has local
Impact, making graceful
degradation possible

Proposed approach

Application-aware

Characteristic-aware

Proposed approach

All processes must collaborate In
the recovery process, even non-
faulty ones;

Same since it's ULFM based

Application-aware

Characteristic-aware

Proposed

approach

All processes must collaborate In
the recovery process, even non-
faulty ones;

Same since it's ULFM based

Need for few changes in the code In
order to be functional: recovery Is
performed by loading a checkpoint,
but the user (programmer) needs to
choose when and what is saved,

Transparency: no changes in code,
lower level structure

Application-aware

Characteristic-aware

Proposed

approach

All processes must collaborate In
the recovery process, even non-
faulty ones;

Same since it's ULFM based

Need for few changes in the code In
order to be functional: recovery Is
performed by loading a checkpoint,
but the user (programmer) needs to
choose when and what is saved,

Transparency: no changes in code,
lower level structure

All process restart from last
checkpoint, even non-faulty ones
(global recovery)

Recovery Is optional, If done it
doesn’'t impact non-faulty processes
(local recovery)

Application-aware

Characteristic-aware

Integration
approach

xlension |

Change

-

None

Scenarlo view

IRecovery policy

Loeal recovery

:

-

14] [15] [9] [18] |

)
|

Global recovery

116§ |8] [17]

None

[13]

4

.

1

110]

Analysis of 3 possible approaches:

Direct mitigation

[DM]

Hierarchical mitigation

[HM]

C/R fault tolerance

[C/R]

Evaluation of the research

* To be compliant with HPC standards, these approaches shall achieve fault
tolerance with low overheads in terms of performance. This Is the most
Important metric.

* The artefacts produced must be scalable, since they target scalable
applications.

* Configurability of the produced artefacts is also important to adapt their
behaviour to the needs of the user.

