
Research Project Proposal:

Fault mitigation

and tolerance for MPI applications
Roberto Rocco

roberto2.rocco@mail.polimi.it
CSE Track



Overview

• Introduction to the research topics

• Problem analysis

• Previous efforts

• Proposed approaches

• Evaluation of the research



High Performance Computing

• Field of computer architectures aimed at reaching the highest computation 

capabilities.

• Performance is core, no trade-offs with power consumption, space, costs.

• Continuous evolution.



Moore’s Law

• The number of transistors 

incorporated in a chip will 

approximately double every 24 

months

• Empirical relationship, used to 

define evolution of computation 

capabilities over the years.

• Adopted by manufacturers as 

target for the production



Moore’s Law



Parallelization
• 1 Flop/s = 1 floating point operation per second;

• From single core

Intel Pentium 4 - 1 core -~3 GFlop/s (f = 3GHz)

• Multi cores in the same CPU chip

Intel i9 9980XE –18 cores -~5-10 TFlop/s

Intel Xeon PHI 7290 –72 cores –3 TFlop/s (f = 1.5-1.7 GHz)

• Multi computer (clusters)

Summit –IBM –2,397,824 cores –200,794 TFlop/s



An example

• Exascalate4Cov: systematic analysis of proteins that allow virus 

replication to virtually test pharmaceutical molecules to stop virus 

propagation.

• Born from a collaboration between 18 research centers (including PoliMi) 

in 7 different nations.

• Speeds up validation steps, earlier drug production.

• On a normal computer it would take 4 months per protein; database 

contains half billion of them.

• The HPC realization is able to evaluate 3 million proteins per second.



Communication

• Running code on multiple computers requires communication:

Data exchange

Code exchange

Coordination

• Message Passing Interface (MPI) is the de-facto standard for intra-process 

communication in HPC environment.

• Rather simple w.r.t. other communication middleware: no underlying 

framework, just library.



MPI basics

• MPI communication is based on 

communicators

• Each process within a 

communicator has a rank

• Ranks go from 0 to size-1



MPI communication

• Point to point

• Collective



The problem

• MPI provides communication with 

good performance but lacks 

features.

• Many features introduced during 

the years

• Fault tolerance is still missing.

• Predefined error handlers: 

[default] causes the program to 

abort on all executing processes;

[other] has no effect other than 

returning the error code to the 

user.

• After an error is detected, the 

state of MPI is undefined. [The 

standard] does not necessarily 

allow the user to continue to use 

MPI after an error is detected.

• MPI 3.1 standard



The problem causes

• The most important MPI programs are well tested.

• A single fault can stop the entire execution, unlikely to happen

even if they do, computation can restart from the beginning.

• So why loose performance to bother with fault tolerance?



What is missing

• We can model a cluster as a collection of components connected in series, 

since a single failure can stop the entire job.

• Let’s suppose each processor core has a MTTF of a century (876000 h).

• Summit cluster has 2,397,824 cores, the MTTF of the cluster is

𝑀𝑇𝑇𝐹

𝑛_𝑐𝑜𝑟𝑒𝑠
=

876000 ℎ

2397824
= 0.365 ℎ ≈ 21 𝑚𝑖𝑛

• From this value we can compute other metrics.



Reliability analysis

• R(t): probability that the system will 

operate correctly in a specified 

operating environment up until time t.

𝑅(𝑡): 𝑃(𝑛𝑜 𝑓𝑎𝑢𝑙𝑡𝑠 𝑖𝑛 [0, 𝑡]) = 𝑒−
1

𝑀𝑇𝑇𝐹𝑡

• Plotting the curve we get the graph on 

the right.

• The probability of terminating 

execution of an application requiring t 

minutes to complete without faults is 

equal to R(t).



Reliability analysis
• If a program needs 20 minutes to 

complete, it will have to be run 

ൗ1 𝑅(20) ≅ Τ1 0.4 = 2.5 times on average;

• If a program needs an hour to 

complete, it will have to be run 

ൗ1 𝑅(60) ≅ Τ1 0.057 ≅ 17.54 times on 

average;

• Exascalate4Cov would need about 46 

hours to search in the entire database: 

about 3.5*10e58 times on average

• It’s easy to see that faults are the 

bottleneck of the system.



First solution: C/R



Better solution

• Let fault stop the program

• Let the program handle the fault and continue its execution past it.

• Many advantages, but harder to implement: needs communication and 

coordination between the nodes.

• Many efforts tried to solve the problem this way.



What is needed

• What can be useful to program for introducing fault tolerance?

• Get which processes failed;

• Propagate errors on the network;

• Eliminate faulty processes from the network;

• Agreement algorithm.

• User Level Failure Mitigation (ULFM) provides all of these.



ULFM

• Helps with fault tolerance, doesn’t implement it.

• It’s focused toward user level usage, not system level.

• Many efforts based on it to create automatic tools

Fenix

CPPC



Fenix



CPPC



Weak points

1. All processes must collaborate in 

the recovery process, even non-

faulty ones;

2. Both need few changes in the 

code in order to be functional: 

recovery is performed by loading a 

checkpoint, but the user 

(programmer) needs to choose 

when and what is saved;

3. All process restart from last 

checkpoint, even non-faulty ones 

(global recovery)



Weak point analysis

• - First: ULFM heritage

• - Second: application-aware approach, achieve fault tolerance without 

loosing too much performance.

• - Third: solved in a further effort 

(in Fenix ULFM wasn’t used because of the first weak point).



Inter-layer communication

• Explicit communication

• Requires changes of code (Fenix & 

CPPC way)

• Viable but sub-optimal

• Is there any alternative? 

• Implicit communication

• Fault Tolerance layer operates 

assuming the application behaves in a 

certain way

• No code changes -> Transparency

• FT layer is application-aware

not portable

• FT layer is characteristic-aware

some degree of portability



Data parallelism
• Focus on the distribution of the data 

across different nodes, which will 

operate on it in parallel.

• Good scaling, exascale ready

• Almost no communication between 

the processes.

• The absence of communication is 

exploitable.

• Even further, a failure has local 

impact, making graceful 

degradation possible



Proposed approach

Application-aware Characteristic-aware



Proposed approach
All processes must collaborate in 

the recovery process, even non-

faulty ones;

Same since it’s ULFM based

Application-aware Characteristic-aware



Proposed approach
All processes must collaborate in 

the recovery process, even non-

faulty ones;

Same since it’s ULFM based

Need for few changes in the code in 

order to be functional: recovery is 

performed by loading a checkpoint, 

but the user (programmer) needs to 

choose when and what is saved;

Transparency: no changes in code, 

lower level structure

Application-aware Characteristic-aware



Proposed approach
All processes must collaborate in 

the recovery process, even non-

faulty ones;

Same since it’s ULFM based

Need for few changes in the code in 

order to be functional: recovery is 

performed by loading a checkpoint, 

but the user (programmer) needs to 

choose when and what is saved;

Transparency: no changes in code, 

lower level structure

All process restart from last 

checkpoint, even non-faulty ones 

(global recovery)

Recovery is optional, if done it 

doesn’t impact non-faulty processes 

(local recovery)

Application-aware Characteristic-aware



Scenario view

Analysis of 3 possible approaches:

[HM]

Hierarchical mitigation C/R fault tolerance

[DM] [C/R]

Direct mitigation



Evaluation of the research

• To be compliant with HPC standards, these approaches shall achieve fault 

tolerance with low overheads in terms of performance. This is the most 

important metric.

• The artefacts produced must be scalable, since they target scalable 

applications.

• Configurability of the produced artefacts is also important to adapt their 

behaviour to the needs of the user.


