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1. Introduction to the research topic

High-Performance Computing (HPC) is the field of computer architectures aimed at reaching the highest computa-
tion capabilities. Its studies range from hardware to all the protocols and algorithms that make the entire structure
performing. Performance is the main focus of the field, power and cost efficiency take a less important role. With
the evolution of technology, HPC changed too: from a single high-performance machine to a network of com-
municating and collaborating computers (also called cluster). In such a distributed environment communication
between machines plays a major role.

Fault tolerance is a distributed computing field aiming at the design of applications able to withstand some
sort of failures. For a program to be fault-tolerant problems must be handled within the application, without the
help of a user. Fault tolerance is very important where errors may create meaningful damage, such as database
management (may cause data loss) or critical applications. Fault tolerance in HPC used to be underestimated: in
the past, the Mean Time Between Failures (MTBF) was big enough to allow execution without relevant problems.
During the years, however, the dimension of clusters has grown and the MTBF has shrunk: it used to be measured
in days [20], but it is now measured in minutes and it’s estimated that soon it will be measured in seconds [5].
This makes faults a relevant problem in HPC because programs are likely to encounter one (at least) and must be
able to handle them.

In the last years, fault tolerance in HPC is gaining more and more attention: popular conferences like SC
(International Conference for High-Performance Computing, Networking, Storage and Analysis), ICS (International
Conference on Supercomputing), HPDC (International ACM Symposium on High-Performance Parallel and
Distributed Computing) and DSN (IEEE/IFIP International Conference on Dependable Systems and Networks)
often feature some efforts in the field. Discussion is further expanded by FTXS (Fault Tolerance for HPC at
eXtreme Scale), a workshop part of many important conferences that every year gathers the most experts in the
field. Moreover, the increase in the frequency of correlated publications in the last years shows that the interest in
this field is growing. Some publications can be found also in journals published by important groups like IEEE
Computer Society, Elsevier and Sage Publications.

1.1. Preliminaries

To better understand the topic some basic rudiments of the HPC environment and fault tolerance are needed. This
subsection is structured as follows: the first part will cover the basics of the Message Passing Interface (MPI) and a
quick overview of the main techniques and algorithm used in fault tolerance, while the second will focus on the
utilities that are (or can be) needed or for the research process.

1.1.1 Research topic overview

Message Passing Interface (MPI) [19] is an interface used for message passing between processes. From its
definition, it increased in popularity and it has been the standard de facto for HPC for a long time. MPI main focus
is the reduction of the communication overhead to a minimum: this led to the creation of a very fast interface but
lacking many useful features, like fault tolerance techniques.

Communication in MPI is based on communicators: these are MPI structures that represent a network. All
the processes are part of a global communicator by default, but others can be created by calling proper functions.
Each communicator assigns a rank to each process within it: it is a unique number from 0 to size-1, where size is
the number of processes in the communicator. Ranks play a core role in MPI, especially the global communicator
ones: they are used to identify processes and are treated like addresses during communication.
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There are three types of communication in MPI: Point-to-point communication allows two processes to
cooperate to achieve communication; Collective communication involves all the processes within a communicator;
One-sided communication allows a process to read/write memory of another. Communication can happen only
between processes part of the same communicator.

Fault tolerance is a wide field of study: errors are a very heterogeneous domain, thus leading to different
solutions. Among the macro-subjects of Fault tolerance, redundancy, failure masking and recovery play a major
role. Redundancy is the duplication of critical components or functions of a system to increase the reliability of the
system. Failure masking is the ability to hide the erroneous behavior before it affects the program. Recovery is
the ability of a program to go beyond failure. Each of these macro-areas contains various algorithms and concepts
that must be considered. Other areas of distributed programming like error detection, agreement, gossiping, etc.
contain notions and algorithms that may be useful in some solutions.

1.1.2 Utilities

HPC applications tend to be written in a language that can allow precise control of the underlying machine.
The most used languages are C/C++ and Fortran since they have these prerequisites and are portable and fast.
Knowledge and use of at least one of the two is needed to properly test the results of the research process.

There are many working implementations of MPI available, all differing in some underlying concepts. OpenMPI
is one of the most used since it combines technologies and resources from several other efforts. The research
process will use it since many recent efforts in the field are going in the same direction.

In the MPI standard, there are ways to implement profiling directly in the library by using the profiling calls
(PMPI). These allow the user to intercept all the calls to the MPI library and to gather data. PMPI allows the
almost complete customization of MPI calls, making the transparent introduction of code easier.

Recently many fault-tolerant MPI applications are adopting a set of functions grouped under the User Level
Failure Mitigation (ULFM) library [3]. The library provides functions for error detection, propagation, agreement,
and recovery. Its adoption is growing and, despite not being part of the MPI standard, it’s the main effort towards
providing fault tolerance mechanisms in MPI and will probably be integrated into future versions.

1.2. Research topic

In the past, MPI applications didn’t deal with fault tolerance: a single fault could stop the execution, but properly
handling it would have a higher impact than just restarting the application. With the increase of the computational
needs, faults got more and more common, making the overheads smaller than the time lost to restarts. And with
the rush toward more computational power (going to exaflops) [2], the problem will only get worse.

ULFM, while being a powerful and useful tool, is hard to use. To properly implement functionalities, the
programmer must know the basics of fault tolerance and deeply analyze its code. Many efforts tried to overcome
the problem by going towards automatic integration [1, 8, 9, 13, 15, 16, 18]. These solutions are, however, subject
to a performance/flexibility tradeoff: some program patterns can simplify the fault-tolerance process, making a
general approach excessive and slower than an ad-hoc one.

Any generic application, upon failure, must lead back to a coherent execution state. To check coherency, both
orphan and missing messages must be considered: the first is a message received before a checkpoint but sent after,
the second is the other way around. Orphan messages must be avoided while missing ones must be saved to be
re-sent in case of rollback [11]. If the absence of orphan messages cannot be avoided, all the processes receiving
those must rollback as the failed process does. This may cause a domino effect that would make execution restart
from a very old point, wasting a lot of computations.

Not all applications would need such complexity though. Data-parallel applications (in particular embarrassingly
parallel applications) have a simple structure: one master, many slaves [12]. Slaves receive pieces of information
from the master, perform some computations and send the result back: no message between slaves is needed. This
simplifies the process of reconstruction of a global view: upon failure, only the master and the failed process may
have to rollback. Any check for orphan or missing messages as above would only worsen performance.
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Data-parallel applications are compatible with the upcoming exascale infrastructures. Their scalability resides
in the low communication cost in terms of performance, since the program will spend most of its time in
local computations: this is a trait that many high-throughput application share. Focusing the analysis on these
applications can be very useful for the upcoming future of exascale computing.

2. Main related works

In this section, we will analyze all the main efforts in the research field. The first subsection will present two
classification metrics, the second will analyze more in detail the techniques and the approaches adopted by the
various efforts.

2.1. Classification of the main related works

Fault-tolerant MPI can be placed inside two groups of more general research fields: the HPC-related one and the
fault tolerance related one. Classification of these two fields is very different so it’s better to analyze only the
intersection between the two. Efforts can be classified based on the approach for the integration with the current
MPI standard and the locality of the recovery protocol adopted.

Integration with the MPI standard can be done in different ways. The most common and easy approach is
by the creation of an extension: the MPI standard is left unchanged and all the new features are in separate
files [8, 9, 13–18]. This ensures compatibility with code not running the fault-tolerant functions but benefits are
exploitable only by directly using those functions. On the other side, changing the MPI standard will allow
fault-tolerance in any program, but full compatibility is not ensured [1, 7]. The choice of the integration way
implies a different focus on the use of the tool: an extension-based approach is more oriented towards future
applications since the programmer has to know the tool features to properly exploit it; on the other hand, a
change-based approach is focused more on making already-designed applications work with the wanted features
without changes. Some efforts don’t emphasize on the integration with the MPI standard: they just implement
fault-tolerance on a single application by changing its code [4, 10]. They focus more on the approach rather than
the production of a reusable artifact.

The other classification criterion is based on the impact a failure has over the network: if the recovery process
affects in a major way (it has to restart) all the nodes of the network, it is called global recovery [8, 16, 17]; if
the affected nodes are only a subset of the network it is called local recovery [9, 14, 15, 18]. Sometimes recovery
is not addressed (the application continues only with the working processes or the failure is solved without
rollback) [7, 10, 13]. Global recovery is easier to implement but doesn’t scale well with the increase of the network
size and the reduction of the MTBF. Local recovery speeds up the process concerning the global counterpart but
needs dependency checking, more complex computations, more complex code, and proper application algorithm
features to be effective. Many efforts tend to start from global recovery and then integrate local recovery as an
improvement, due to the higher difficulty of the second approach ( [9] is the evolution of [8], [15] is the evolution
of [16]).

Following the above classification criteria, we can represent the most important efforts in the field in Table 1.

2.2. Brief description of the main related works

Fault tolerance can be achieved following many different approaches. In the following paragraphs, the most used
approaches are analyzed. A more in-depth and complete analysis is also available in [11].

Among all the efforts produced, the most used technique used for implementing fault-tolerance in an
application is Checkpoint and Restart (C/R) [1, 8, 9, 14–18]. It consists of the periodic creation of saving points
from which the execution can safely restart in case of failure. C/R is widely used in many other fields of
distributed computing, like database management. It’s further classified depending on the level in which the
saving operation is performed: in system-level checkpointing the save operation is performed without knowing
details of the running applications [1], in application-level checkpointing the programmer can specify which
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Recovery policy
Local recovery Global recovery None

Integration
approach

Extension [14] [15] [9] [18] [16] [8] [17] [13]
Change [1] [7]
None [4] [10]

Table 1: Classification of the main related works. In italics efforts using ULFM.

variables need to be saved [8, 9, 14–18]. The first is more general, but the latter uses less memory to achieve the
same result. Almost all the solutions using C/R tend to use application-level checkpointing due to its efficiency.
In a distributed environment C/R can also vary on the coordination of the saving routine and on the medium that
will store the checkpoint data.

Another technique is a log-based approach. Its use is very low compared to C/R because the cost of adoption
is too high in terms of performance [4].

An approach closer to MPI is the use of intercommunicators: MPI communicators are split into smaller groups
and new structures are introduced to allow inter-group communication. Upon failure, only a smaller group detects
the problem and has to handle with it, the others can continue their execution. This approach is adopted rarely
because it doesn’t solve the entire problem: coherence is not addressed and must be considered separately [10].

Algorithm-Based Fault Tolerance (ABFT) is a very application-specific approach that consists of the exploit of
some characteristics of the application algorithm to achieve fault-tolerance [6]. Its use has been explored but its
strict dependence on the application makes this approach very situational.

Other approaches tackle a specific type of fault and they adopt a completely different approach with regards
to the ones above [13]. These solutions, however, exploit the characteristics of the fault they consider and, as a
consequence, tend to not apply to other types of faults

It shall be noted that these approaches are correlated with the classification: an application-level C/R approach
cannot be realized with a change of the MPI standard due to the necessity of additional information unavailable
in a transparent approach. All the efforts try to evaluate all the different tradeoffs and choose the solution based
on the target application.

2.3. Discussion

Fault tolerance in HPC received a lot of attention in recent conferences, leading to many efforts that widely
described the problem and possible approaches. ULFM is a valuable tool that provides implementations of useful
algorithms but needs proper knowledge to achieve anything. Its actual use depends on the application and its
characteristics. Many programs don’t use ULFM: many don’t deal with fault tolerance at all, basing themselves on
the “nothing will fail” axiom. The need for the use of these applications in a fault capable environment led to the
creation of tools that transparently implemented fault tolerance (changing the MPI standard).

As was mentioned before, exploiting application characteristics can lead to more efficient results than a general
approach. This direction is suggested by many efforts that aimed at the adaptation of a single application. This
proves that, despite the presence of general-purpose fault-tolerance tools like Fenix or CPPC, a more specific
approach is relevant.
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