
Titolo presentazione

sottotitolo

Milano, XX mese 20XX
Roberto Rocco

roberto2.rocco@mail.polimi.it

CSE Track

Legio: Fault Resiliency for 
Embarrassingly Parallel MPI 
Applications



Rocco Roberto

Overview

• Problem definition

• Previous solutions

• Legio framework

• Hierarchical Legio evolution

• Experimental campaign

• Conclusions & Future work



Rocco Roberto

High Performance Computing

• Field of computer architectures aimed at reaching the 

highest computation capabilities.

• Performance is core, no trade-offs with power

consumption, space, costs.

• Continuous evolution.



Rocco Roberto

Most performing architectures

Rank System Cores TFLOP/s

1 ASCI White,
United States

8,192 4.9380

2 ASCI Red,
United States

9,632 2.3790

3 ASCI Blue-
Pacific SST, 
United States

5,808 2.1440

11/2000

Rank System Cores TFLOP/s

1 Supercomput
er Fugaku,
Japan

7,630,848 442,010.0

2 Summit,
United States

2,414,592 148,600.0

3 Sierra,
United States

1,572,480 94,640.0

11/2020

• Growth in the number of cores of ≈ 1000 factor;

• Growth in performance of ≈ 100000 factor.



Rocco Roberto

Impact of faults in the HPC environment

• How much frequent are faults in HPC systems?

• Analyze reliability (R(t)): probability that the system will 

operate correctly up until time t.

• For simplicity, let’s assume exponential distributions for 

each core, with Mean Time To Failure (MTTF) equal to 1 

century.

𝑹(𝒕): 𝑷(𝒏𝒐 𝒇𝒂𝒖𝒍𝒕𝒔 𝒊𝒏 [𝟎, 𝒕]) = 𝒆−
𝟏

𝑴𝑻𝑻𝑭𝒕



Rocco Roberto

Impact of faults in the HPC environment

• The probability that there are no faults in the system until 

time t can be computed as follows:

𝑹𝒔𝒚𝒔 𝒕 = 𝑹 𝒕
𝒏
= 𝒆

−𝒏
𝑴𝑻𝑻𝑭𝒕 = 𝒆

−𝟏
𝑴𝑻𝑻𝑭
𝒏

𝒕

where n is the number of cores of the system.

• The MTTF of the system is equal to the one of the core 

divided by the number of cores.



Rocco Roberto

Evolution of faults in HPC

• MTTF on ASCI Red = 876000h / 9632 cores ≈ 91h

• MTTF on Summit = 876000h / 2,414,592 cores ≈ 21m

• An example 48h execution

 would need on average 1.69 executions on ASCI Red

 would need on average 3,6 * 1059 executions on 

Summit.



Rocco Roberto

MPI’s countermeasures

• Message Passing Interface (MPI), the de-facto standard for 

intra-process communication.

• MPI provides efficient (low overhead) communication.

• Upon fault the status of the execution is undefined.

• Many efforts developed solutions to this problem.

• The User Level Fault Mitigation (ULFM) library is the most 

prominent one.



Rocco Roberto

MPI basics

• MPI communication is 

based on communicators.

• Each process within a 

communicator has a rank.

• Ranks go from 0 to size-1.



Rocco Roberto

ULFM basics

• ULFM introduces new functionalities able to bring back 

the execution to a consistent state after fault.

• It introduces functions able to:

 Get which processes failed;

 Propagate errors on the network;

 Eliminate faulty processes from the network;

 Let all the non-failed processes agree on a value.

• May be integrated in future MPI versions.



Rocco Roberto

All-in-one frameworks drawbacks

• Many frameworks combined ULFM with 

Checkpoint/Restart (C/R) to produce all-in-one 

frameworks for fault tolerance (Fenix, CPPC, CRAFT, 

LFLR).

• But…

 The integration needs code changes in the 

application;

 C/R overhead can be non-negligible.



Rocco Roberto

Legio strong points

• Transparency: no code changes needed in the 

application.

• Fault resiliency: execution continues only with the non-

failed processes.

• Embarrassingly parallel applications: they solve a 

problem that is intrinsically parallel, little dependency, 

simple communication structure.



Rocco Roberto

Legio core idea

• Transparently substitute the MPI structures used by the 

application with others handled by the framework.

• Upon fault, the structures handled by the framework are 

substituted, and the fault is masked to the application.

• Seamless integration using PMPI.

Application

MPI

Physical layer

Application

MPI

Physical layer

PMPI - Legio



Rocco Roberto

Legio details

• Ranks in the communicator handled by the framework 

may be different from the ones in the application 

communicator.



Rocco Roberto

Legio details

• Multiple structures can be used, each one must have its 

own substitute.

• What to do in case of fault?

 Repair and repeat the operation.

• File and windows are not supported by ULFM.



Rocco Roberto

Legio details

• Some operations change behaviour when using the 

structures handled by the framework.

 Like scatter and gather.



Rocco Roberto

Legio weak points

• The framework transparently introduces fault resiliency in 

an embarrassingly parallel application.

• But…

 The repair procedure needs the participation of all 

the processes;

 The shrink operation, on which the repair procedure 

bases, should scale worse than linearly.



Rocco Roberto

Hierarchical Legio principles

• Build a networking layer transparent to the application, 

which will reduce the impact of a fault.

• Upon fault, only the processes that directly communicate 

with the failed process have to participate in the repair 

procedure.

• Some processes can proceed without repairing…

• … at the cost of some communication overhead.



Rocco Roberto

Hierarchical Legio principles

• Entire comm

• Local_comm

• Global_comm

• Linear # of 

comm

• Connected

• Single 

shortest path

0

1 2

3

4 5

6

7 8

9



Rocco Roberto

Hierarchical Legio communication

• One-to-one

• One-to-all

• All-to-one

• All-to-all

• Comm-creator

• File op

• Local_only

0

1 2

3

4 5

6

7 8

9



Rocco Roberto

Hierarchical Legio repair procedure

• Non-master 

faults are 

trivial, 

repairing the 

local_comm is 

enough.

0

1 2

3

4 5

6

7 8

9



Rocco Roberto

Hierarchical Legio repair procedure

• To deal with the 

faults of the 

master 

processes, we 

need additional 

communicators.

• POV comms

0

1 2

3 4

5

6

7 8

9



Rocco Roberto

Hierarchical Legio repair procedure

• 3 fails

• 4 comms

need repair

• All the 

processes 

within local 

and global 

notice the 

fault

• 1 and 2 do not

0

1 2

3 4

5

6

7 8

9



Rocco Roberto

Hierarchical Legio repair procedure

• 4 new master

• Using purple, 

4 gets into 

global

• Meanwhile 0 

propagates 

the 

notification to 

1 and 2, which 

can shrink

0

1 2
3

4

5

6

7 8

9



Rocco Roberto

Hierarchical Legio repair procedure

• 4 joins red 

using green

0

1 2

4

5

6

7 8

9



Rocco Roberto

Hierarchical Legio repair complexity

• In the hierarchical case, the shrink complexity can be 

written as follows:

𝑹𝑯 𝒔, 𝒌 = ቐ
𝑺 𝒌 + 𝟐𝑺 𝒌 + 𝟏 + 𝑺

𝒔

𝒌
𝑺 𝒌

depending if a master or non-master failed.

• If S(.) scales linearly or worse with the number of 

processes involved, then we proved that:

∃𝒔𝟎(∀𝒔 > 𝒔𝟎 ∃𝒌 𝑹𝑯 𝒔, 𝒌 < 𝑺 𝒔 )



Rocco Roberto

Experimental campaign

• We used the Marconi100 cluster (11th most powerful in the 

world), 32 processes per node.

• Two types of experiments:

 Per-operation overhead measurement;

 Application impact measurement.

• For each type, we considered two different experiments.



Rocco Roberto

Experimental campaign: mpiBench



Rocco Roberto

Experimental campaign: ad-hoc code



Rocco Roberto

Experimental campaign: EP applications



Rocco Roberto

Conclusions

 Experiments showed the effectiveness of the 

developed Legio framework. The low overhead is a key 

feature.

 The evolution, despite performing more operations, 

showed comparable results, and can be relevant 

especially in big executions.

 The transparency is a desirable property not present 

in similar frameworks.

 The problem will be increasingly relevant, since the 

size of HPC architectures will continue to grow.


