

Overview

 Problem definition

* Previous solutions

 Legio framework

* Hierarchical Legio evolution
 Experimental campaign

e Conclusions & Future work

Rocco Roberto POLITECNICO MILANO 1863

High Performance Computing

* Field of computer architectures aimed at reaching the
highest computation capabilities.

 Performance is core, no trade-offs with power
consumption, space, costs.

e Continuous evolution.

Rocco Roberto POLITECNICO MILANO 1863

Most performing architectures

11/2000 11/2020
i i i
ASCI White, Supercomput 7,630,848 442,010.0
United States 8,192 g er Fugaku,
2 ASCIRed, Japan

United States 9,632 2.3790 2 Summit, 2,414,592 148,600.0
3 ASCI Blue- United States

Pacific SST, 5,808 2.1440 3 Sierra, 1,572,480 94,640.0
United States United States

« Growth in the number of cores of = 1000 factor;
 Growth in performance of = 100000 factor.

Rocco Roberto POLITECNICO MILANO 1863

Impact of faults in the HPC environment

« How much frequent are faults in HPC systems?

* Analyze reliability (R(t)): probability that the system will
operate correctly up until time t.

« For simplicity, let’s assume exponential distributions for
each core, with Mean Time To Failure (MTTF) equal to 1
century.

1
R(t): P(no faults in[0,t]) = e MITF'

Rocco Roberto POLITECNICO MILANO 1863

Impact of faults in the HPC environment

 The probability that there are no faults in the system until
time t can be computed as follows:

w _on, THITF
Rsys(t) — (R(t)) = eWt — e(n)

t

where n is the number of cores of the system.

« The MTTF of the system is equal to the one of the core
divided by the number of cores.

Rocco Roberto POLITECNICO MILANO 1863

Evolution of faults in HPC

« MTTF on ASCI Red =876000h / 9632 cores = 91h
e MTTF on Summit = 876000h / 2,414,592 cores = 21m

 An example 48h execution
» would need on average 1.69 executions on ASCI Red

» would need on average 3,6 * 10°° executions on
Summit.

Rocco Roberto POLITECNICO MILANO 1863

MPI’s countermeasures

« Message Passing Interface (MPI), the de-facto standard for
Intra-process communication.

 MPI provides efficient (low overhead) communication.
« Upon fault the status of the execution is undefined.
« Many efforts developed solutions to this problem.

« The User Level Fault Mitigation (ULFM) library is the most
prominent one.

Rocco Roberto POLITECNICO MILANO 1863

MPI basics

« MPI communication is MPL COMM_WORLD rodeo CLUSTER
based on communicators.

Process ID (rank):
node02

« Each process within a
communicator has arank.

node03

node04

« Ranks go from 0O to size-1.

Rocco Roberto POLITECNICO MILANO 1863

ULFM basics

« ULFM introduces new functionalities able to bring back
the execution to a consistent state after fault.

« Itintroduces functions able to:
» Get which processes failed,
» Propagate errors on the network;
» Eliminate faulty processes from the network;
» Let all the non-failed processes agree on a value.

« May be integrated in future MPI versions.

Rocco Roberto POLITECNICO MILANO 1863

All-in-one frameworks drawbacks

 Many frameworks combined ULFM with
Checkpoint/Restart (C/R) to produce all-in-one
frameworks for fault tolerance (Fenix, CPPC, CRAFT,
LFLR).

« But...

» The integration needs code changes in the
application;

» C/R overhead can be non-negligible.

Rocco Roberto POLITECNICO MILANO 1863

Legio strong points

« Transparency: no code changes needed in the
application.

« Fault resiliency: execution continues only with the non-
failled processes.

« Embarrassingly parallel applications: they solve a
problem that is intrinsically parallel, little dependency,
simple communication structure.

Rocco Roberto POLITECNICO MILANO 1863

Legio core idea

 Transparently substitute the MPI structures used by the
application with others handled by the framework.

 Upon fault, the structures handled by the framework are
substituted, and the fault is masked to the application.

« Seamless integration using PMPI.

Application
Application)
PMPI - Legio
MPI
MPI

Physical layer

Physical layer

Rocco Roberto POLITECNICO MILANO 1863

Legio details

 Ranks in the communicator handled by the framework
may be different from the ones in the application

communicator.
oz fsfefs]s
ol1lz213|l2a]5s]s

Original rank

Rank in substitute

Rank in substitute
after 3 failed
Rank in substitute
after & failed
Rank in substitute
after 0 failed

Rocco Roberto POLITECNICO MILANO 1863

Legio details

 Multiple structures can be used, each one must have its
own substitute.

« What to do in case of fault?
» Repair and repeat the operation.

 File and windows are not supported by ULFM.

Rocco Roberto POLITECNICO MILANO 1863

Legio details

« Some operations change behaviour when using the
structures handled by the framework.

» Like scatter and gather.

o fefsfefe]e
o fe]xfefe]s
A B c D E E G

QOriginal rank

Rank in substitute
after 3 failed
Scatter result if
no faults
Scatter result
using substitute
Scatter result
correct

Rocco Roberto POLITECNICO MILANO 1863

Legio weak points

« The framework transparently introduces fault resiliency in
an embarrassingly parallel application.

e But...

» The repair procedure needs the participation of all
the processes;

» The shrink operation, on which the repair procedure
bases, should scale worse than linearly.

Rocco Roberto POLITECNICO MILANO 1863

Hierarchical Legio principles

 Build a networking layer transparent to the application,
which will reduce the impact of a fault.

 Upon fault, only the processes that directly communicate
with the failed process have to participate in the repair
procedure.

« Some processes can proceed without repairing...

... at the cost of some communication overhead.

Rocco Roberto POLITECNICO MILANO 1863

Hierarchical Legio principles

e Entirecomm /(N p \
* Local_comm @

 Global comm

f@ @\
 Linear # of ~ s ~ s
comm r D g N

« Connected \ @)

« Single

shortest path \\@ @) \@ @y

Rocco Roberto POLITECNICO MILANO 1863

Hierarchical Legio communication

4 (O \

e One-to-one

(@ @ * One-to-all
_ y 2 p All-to-one
 All-to-all
() () « Comm-creator
\ @ File op

\\@ @) \@ @y Local only

Rocco Roberto POLITECNICO MILANO 1863

Hierarchical Legio repair procedure

4 (O \

* Non-master
(@ @ faults are
\ / \ / trivial,
repairing the
g \ (@ h local comm is
\o) enough.

@ o @ 9,

Rocco Roberto POLITECNICO MILANO 1863

Hierarchical Legio repair procedure

To deal with the
faults of the
master
processes, we
need additional
communicators.

POV comms

Rocco Roberto POLITECNICO MILANO 1863

Hierarchical Legio repair procedure

« 3fails

* 4comms
need repair

 All the
processes
within local
and global
notice the
fault

e 1and 2do not

Rocco Roberto POLITECNICO MILANO 1863

Hierarchical Legio repair procedure

4 new master

« Using purple,
4 gets into
global

« Meanwhile O
propagates
the
notification to
1 and 2, which
can shrink

Rocco Roberto POLITECNICO MILANO 1863

Hierarchical Legio repair procedure

\ 4joins red
using green

Rocco Roberto POLITECNICO MILANO 1863

Hierarchical Legio repair complexity

* In the hierarchical case, the shrink complexity can be
written as follows:

S
S(k) +2S(k+1) +S (E)
S(k)
depending if a master or non-master failed.

RH(S, k) =

« If S(.) scales linearly or worse with the number of
processes involved, then we proved that:

3Aso(Vs > so(3k|Ry(s, k) < S(s)))

Rocco Roberto POLITECNICO MILANO 1863

Experimental campaign

« We used the Marconil00 cluster (11" most powerful in the
world), 32 processes per node.

 Two types of experiments:
» Per-operation overhead measurement;

» Application impact measurement.

 For each type, we considered two different experiments.

Rocco Roberto POLITECNICO MILANO 1863

Experimental campaign: mpiBench

MPI Bcast Lime MPI Reduce Lime
[| | I | | | I I I] 5L | | | | | | I I I]
-|—— Legio 1 LU — Legio E
10t El—— Legio H . | |—— Legio H]
g ULFM only E ULFM only
] 104 =
))]
= 10% | = i
: | Il |g o} ;
2| -
10 : 10 £ :
| 1 1 | | 1 | 1 1 1{]1 | 1 1 | | | | 1 1
S ST S ST
Packel size [B] Packel size [B]

Rocco Roberto POLITECNICO MILANO 1863

Experimental campaign: ad-hoc code

MPI_Bcast overhead MPI_Reduce owerhead

] 10 * !
n2f EREEEEE
o 1.2
) i
: | oo |
) I:II T I I_II I _
0k - === - .
, 0.4
32 i 128 256 32 128 256
MNetwork St [proomsses] N!—"t.‘ill‘l.l!l[Sime [procmses]
|10 Legiol0 Legio H | 10 Leggio D0 Legio 1 |
0 2 H.FI_BaII:lar over biesd Repair time
2F =
EOR B ’) gl
o
E :
£ 1!
-
Y HI all |’ M-
32 1258 206
N:—vt.wmlt Sime [proomses)] N[—"t.‘i\l‘l.ﬂ.’l[S []:II'ER"[-‘!-H—!—:]
|[||:| Legio 0 Legio H | |[||:| Legioll D Legio H master fault! 0 Legio H non-master fault |

Rocco Roberto POLITECNICO MILANO 1863

Experimental campaign: EP applications

NAS EP bhenchmark execulion Limes distribulion

100

Time (s)

—Eé

64 128

Network size [processes|

Rocco Roberto

Mnllﬁular Docking execution times distribution

I I
==

32 64 128 256

Network size [processes]

POLITECNICO MILANO 1863

Conclusions

v Experiments showed the effectiveness of the
developed Legio framework. The low overhead is a key
feature.

v' The evolution, despite performing more operations,
showed comparable results, and can be relevant
especially in big executions.

v The transparency is a desirable property not present
In similar frameworks.

v' The problem will be increasingly relevant, since the
size of HPC architectures will continue to grow.

Rocco Roberto POLITECNICO MILANO 1863

