Research Project Proposal: IP Protection through Logic Locking at Register-Transfer Level

Luca Collini luca.collini@mail.polimi.it CSE

- Introduction to the problem
 - Globalization of the IC supply chain & security threats
 - Logic locking
- Research goal
- State of the art
- Research plan

Globalization of the IC supply chain

Security threats

Reverse Engineering

Intellectual Property theft

estimated loss due to IP violations alone was \$4 billions in 2008

total loss from IC counterfeiting was estimated to be about \$169 billions in 2011

Malicious modifications

backdoor insertion

planned obsolescence trojans

Thwarting reverse engineering

Plain design

Shamsi, K., Li, M., Plaks, K., Fazzari, S., Pan, D. Z., and Jin, Y. Ip protection and supply chain security through logic obfuscation: A systematic overview

Logic Locking

Obfuscated design

- Introduction to the problem
 - Globalization of the IC supply chain & security threats
 - Logic locking
- Research goal
- State of the art
- Research plan

Research goal

Untrusted foundry

- Introduction to the problem
 - Globalization of the IC supply chain & security threats
 - Logic locking
- Research goal
- State of the art
- Research plan

Threat model: defines goals and abilities of the attackers

Logic locking threat models

- Oracle: a chip that performs correct computations • Ambiguity: ability of an attacker to distinguish between primary inputs
- and key inputs

Common threat models:

- Distinct ambiguity oracle-guided: commercial products • Distinct ambiguity oracle-less: low volume chips

Evaluation metrics

Metric	Description	Property		
Verification failure	Measures how the obfuscated design introduces failing points with wrong keys	Related to functionality		
Entropy	Measures the number of distinct outputs of the circuit	Related to power and resiliency towards oracle-less attacks		
Differential entropy	Measures the proportion of bits that differ between the obfuscated and the plain design	Related to power overhead		
Reconvergence	Measures the rate of internal signals converging in other nodes	Related to resiliency towards key sensitization attack		
Key structure metric	Measures the structural interconnection between the key gates	Related to resiliency towards key sensitization attack		

Pre-synthesis logic locking techniques

- TAO: HLS tool to produce obfuscated RTL descriptions
- ASSURE: pre-synthesis tool that works at RT level
- CDFG: RT level technique that obfuscates the data flow graph of a design ullet
- BDD: pre-synthesis technique that works on Binary Decision Diagrams ullet

Post-synthesis logic locking techniques

- RLL: random insertion of logic gates (typically XOR or XNOR gates) controlled by a key bit \bullet
- SLL: strengthens the insertion of logic gates by inserting key-gates with complex interference among them •
- Anti-SAT: technique that aims at making SAT attacks unfeasible •
- Cone size: integrates the key gates with other gates that have the largest fanin or fanout cone or both

		Area overhead	Power overhead	Timing overhead	SAT attack resiliency	Key sens. attack resiliency	Verification failure metric	Entropy	Differential entropy	Reconvergence	Key structure metric
synthesis	TAO [7]	High	n.a.	Low	n.a.	n.a.	n.a.	n.a.	High ^a	n.a.	n.a.
	ASSURE [6]	Low	n.a.	Low	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
	CDFG [2]	Low	Low	n.a	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
Pre	BDD Random [4]	High	High	Medium	Low	High	High	Low	Medium	Medium	High
	BDD AntiSAT [4, 12]	High	High	Medium	Medium	High	Low	Medium	Low	High	High
	BDD Entropy [1]	Medium	Medium	Low	Low	High	High	High	Medium	Low	High
	RLL [8]	Low	Low	Low	Low	Low	High	Medium	High	Medium	Low
sis	SLL [13]	Low	Low	Low	Low	Medium	medium	Medium	High	Medium	Low
t-synthe	Cone size [1]	Low	Low	Medium	Low	Medium	Low	Medium	High	Medium	Medium
Post	AntiSAT Random [8, 12]	Medium	Medium	Low	High	Low	High	Medium	High	Low	Medium
	AntiSAT SLL [13, 12]	Medium	Medium	Low	High	Medium	Medium	Medium	High	Low	Medium
	Anti SAT Cone size [1]	Medium	Medium	Medium	High	Medium	Low	Medium	High	Low	Medium

Category	Techniques	Pros	Cons
Pre-synthesis HLS	TAO, BDD	Hide semantic information	Require modification of the design flow
Pre-synthesis RTL	ASSURE, CDFG	Hide semantic information Do not require modifications on the design flow	?
Post-synthesis	RLL, SLL, Cone Size, Anti SAT	Do not require modifications on the design flow	Cannot protect information already embedded in the design by synthesis optimizations

State of the art - Summary

Conclusion

- ASSURE and CDFG showed that logic locking at register-transfer level deserves further investigations
- The proposed metrics are empiric and experimental and do not allow their use with optimization methods
- Hardware obfuscation is missing security properties clearly defined by mathematical terms

Open questions

- How to select obfuscation points?
- How to measure the security and compare two designs?

- Introduction to the problem
 - Globalization of the IC supply chain & security threats
 - Logic locking
- Research goal
- State of the art
- **Research plan**

Research goal

Research plan

develop a complete logic locking framework at register-transfer level

and

evaluate it with new security metrics

Research plan

We plan to carry out this research with a two-phase development plan

- techniques and evaluation chain to measure cost and security
- chain
- feedback

• First development round: prototype implementing the RTL obfuscation

• First evaluation round: benchmarking the prototype using the evaluation

• Second development round and final evaluation: refining the techniques and the metrics identified in the first phase thanks to the evaluation

Research plan

Thank you for your attention!

Luca Collini

luca.collini@mail.polimi.it

