
Composable Heuristics for Register-Transfer Level
Logic Locking Optimization

Luca Collini
DEIB

Politecnico di Milano
Milano, Italy

luca.collini@mail.polimi.it

Christian Pilato
DEIB

Politecnico di Milano
Milano, Italy

christian.pilato@polimi.it

Abstract—Protecting the intellectual property (IP) of inte-
grated circuits is more and more important as the globalization
of the electronics supply chain exposes designs to new security
threats such as reverse engineering and IP theft. Logic Locking
is a promising approach to thwart these threats. Existing logic
locking techniques take in consideration overheads only in the
evaluation phase and not during obfuscation. We propose a
framework to optimize the use of register-transfer level locking
for a given metric. In this case, we optimize differential entropy
under area or key bits constraints. We define a set of heuristics
to give a score based on the analysis of the System Dependence
Graph. The proposed solution yields better results for 94% of
the cases when compared to non-optimizing techniques. When
compared to state-of-the-art heuristics it shows comparable
results while requiring 100× to 400× less computational time.

I. INTRODUCTION

An increasing number of design houses are outsourcing
Integrated Circuit (IC) manufacturing due to the high cost
of foundries [1]. Intellectual Property (IP) protection is be-
coming a crucial topic in hardware design. In fact, foundries
have access to the IC design files exposing them to reverse
engineering and consequently enabling IP theft and malicious
modifications. The threats can range from overbuilding and
disclosing secret technologies to compromising valuable net-
work infrastructures. An example is the attempted trade of
counterfeited Cisco equipment to the US Department of De-
fense [2]. The total loss from IC counterfeiting was estimated
to be about $169 billions in 2011 [3]. Since over 80% of the
reported counterfeited parts in the 2019 ERAI reported parts
statistics were never reported before [4], we expect the real
number of counterfeited parts could be much higher.

Hardware obfuscation aims at hiding and disabling the
functionality of a chip to thwart reverse engineering of the IC
functionality. Logic Locking is a well-known family of hard-
ware obfuscation techniques. Logic locking aims at thwarting
reverse engineering by adding extra logic to the original
design that is controlled by a new set of inputs called key
inputs. The correct functionality is obtained only if the correct
sequence of bits is provided to the key inputs. Since logic
locking requires to add extra logic to the design, it introduces
overheads in terms of area, power and timing. The overheads
are proportional to the cost of the design and the number of
key bits used, limiting their use. Hardware designers trying

to protect their work while keeping these overheads under a
certain limit. This means that in real-world cases we cannot
obfuscate the whole design.

Obfuscating different parts of a design will yield different
results in terms of security. It is important to spend the key
bits as efficiently as possible. However, it is not trivial to
predict the effects of locking techniques especially in large
designs. Applying logic locking before logic synthesis allows
us to reason on the semantic aspects of the design and
protect information before it gets embedded into the netlist.
ASSURE [5] proposes a set of provably-secure RTL locking
techniques but it applies obfuscation following the topological
order of the design. The order in which the design is written
changes the obfuscation result.

A design space exploration technique for optimizing the
use of logic locking during high-level synthesis (HLS) is
proposed in [6]. This technique shows interesting results, but
the approach requires to use HLS in the design flow, limiting
the application only to new and HLS-generated components.
Also, the technique employs a genetic algorithm to perform
design space exploration, making it computationally intensive,
especially at RTL where the number of potential obfuscation
points is larger and the RTL simulations are slower. At this
level it can be used only on small designs. That is due to the
fact that it performs a ”blind” search, without reasoning on
the properties of the design.

We propose a framework to optimize semantic obfusca-
tion techniques by carefully selecting the parts to obfuscate.
We formulated a set of heuristics to give a score to each
obfuscation point. The higher the score of an obfuscation
point, the more likely it will be used for the obfuscation.
These heuristics are all based on properties extracted from
signal dependencies in the design. We extracted and analysed
the System Dependence Graph of the design. Heuristics are
strongly design dependent and it is necessary to combine
them. Our scoring heuristics are composable and new scoring
heuristics can be easily added to the evaluation chain in a
transparent way.

After defining the threat model and motivating the work we
present our main contributions:
• a modular and composable design framework to apply

logic locking with the support of RTL simulations and



synthesis estimators;
• a set of scoring heuristics based on the analysis of the

System Dependence Graph of an input RTL design;
• a prototype implementation and evaluation of the pro-

posed approach.
The proposed framework obtains results that are better than
topological obfuscation for 94% of the tested cases while
keeping computation time 100 to 400 times lower than existing
design space exploration approaches.

II. BACKGROUND

A. Threat model

We assume that a rogue employee at an external foundry
wants to reverse engineer a given IC functionality to make
illegal copies. The employee has access to the (obfuscated)
layout files that were sent to the foundry for fabrication. The
rogue employee can reverse engineer these files and obtain
an RTL description [7]. The attacker can then run simulations
on the obtained RTL description to infer knowledge on the
design. In our work we consider that the attacker is capable of
distinguishing between primary inputs and key inputs (distinct
ambiguity) [8]. Moreover we assume that the attacker can dis-
tinguish between data and control inputs and outputs. We also
assume that the attacker does not have access to the correct
key neither to a working chip (oracle) therefore the attacker
does not have any information on the true I/O behaviour of the
design. This is plausible for low volume applications where
it is not possible for an attacker to buy a working chip from
the market. It has been recently shown that techniques that
prevent oracle-based attacks, such as DisORC [9], can be
combined with RTL logic locking techniques to complement
the protection [10].

The attacker may still perform netlist-based attacks such
as machine learning-guided structural and functional anal-
ysis [11]–[13], desynthesis [14], and redundancy identifica-
tion [15] to unlock the design and perform reverse engineering.
However, the techniques that we are optimising have been
proved to be resilient towards these attacks without revealing
information about the design [5].

B. RTL Locking

RTL locking hides the functionality of a given RTL descrip-
tion based on a locking key K. In our work we consider the
obfuscation techniques proposed in ASSURE [5]:
• Constant obfuscation: constants are completely replaced

by key bits. For example a = b+ 4′b0100 is obfuscated
as a = b+Kc where Kc is a the 4-bit constant stored in
the key.

• Operation obfuscation: a multiplexer is added to pick
between the right operation and a dummy one based on
the value of a key bit. For example a = b+c is obfuscated
as a = Ko?(b+ c) : (b− c).

• Branch obfuscation: the condition is XOR-ed with a key
bit and it is inverted if the key bit is 1. For example, the
condition (a < b) can be obfuscated as (a >= b)

⊕
Kb

or as (a > b)
⊕
Kb depending on the value of Kb.

The locking key is composed of two parts. The first part is
randomly generated and is used to control the obfuscation of
control branches and operations. The second part is used to
extract constants from the design embedding them in the key.
An new input port is added through which the locking key
is provided, the key then gets partitioned into sub-keys to be
distributed to all locked elements. This approach protects the
semantics of the designs rather than its structural netlist. An
obfuscation point is an RTL element that can be obfuscated
(i.e. a constant value, a conditional branch, or an operation)
using a given locking technique. We aim at carefully picking
the obfuscation points to achieve better results both in terms
of security metrics and area overhead.

C. Security Evaluation

In an oracle-less scenario an attacker will have to in-
fer information either by looking at the design files or by
observing the design functionality through simulations. The
obfuscation techniques that we consider reveal no information
about the design [5]. For this reason we evaluate the security
of obfuscated solutions looking at the output corruptibility,
i.e. how much the obfuscation techniques change the output
values with respect to the expected one. We use the mean
differential entropy as our security metric as it measures output
corruptibility [16], i.e. the differences between the expected
output values and the ones obtained when applying a given
key. The differential entropy of a design is the sum of the
differential entropy measured on each output bit. We used the
mean differential entropy as it is independent of the number
of output bits of the design. We measured mean differential
entropy using the following formula:

H =

N∑
i=1

(
Pi · log

1

Pi
+ (1− Pi) · log

1

1− P s
i

)
· 1
N

Where Pi is the probability of output i being equal to 1,
therefore Pi ∈ [0, 1] and N is the number of output bits.

Pi =

∑N
w=1

∑M
t=1OUT [i]t

⊕
OUT [i]t,w

N ·M
Where OUT [i]t is the correct value of the output bit i when
the input t is given to the unlocked circuit, and OUT [i]t,w is
the value of the output bit i when the input t is given together
with the wrong key w to the locked circuit. N and M are the
number of possible input and key combinations, respectively.
Since N and M grow exponentially with the number of input
and key bits, the value of Pi is often estimated.

In the threat model that we consider, we suppose that the
attacker is able to distinguish between data and control inputs
and outputs. For this reason we assigned zero as differential
entropy value (worst case value) to those solutions that induced
the design to not manage control signals properly (i.e. never
asserting ready or valid signals). Those solutions allow an
attacker to easily discard wrong keys and must be avoided.

We aim at maximizing the mean differential entropy making
it as close as possible to 1. This is the case where Pi = 0.5,∀i.



In this situation the attacker cannot make any educated guess
on the design functionality, leading to a probability of 2−K

(where K is the number of key bits) to guess the correct key.

D. Motivation

A fabless design house wants to protect its new RTL design
to avoid competitors to steal its IP. However, obfuscating the
design will inevitably increase its cost. To limit the extra
cost, designers decide a maximum area overhead and pick
a tamper-proof memory in which the key will be stored,
fixing a maximum number of key bits that can be used for
obfuscation. HLS solutions such as [6] are not applicable
since the design is already at RTL. They may consider using
ASSURE [10] but such technique is dependent on the structure
of RTL files and they would need to refactor the design
if the results are not satisfactory and they want to explore
alternative solutions. With this work we propose a framework
that provides different procedures to select obfuscation points,
allowing us to perform optimizations under area or key bits
constraints. To analyze the effect of obfuscation points prior to
simulation we look at dependencies between statements. We
represent such dependencies with a Dependence Graph.

E. Dependence Graphs

Dependence graphs were first proposed in 1972 to represent
dependencies that occur within a program [17]. In our work
we are interested in Program Dependence Graphs (PDG) and
System Dependence Graphs (SDG). A PDG is a directed graph
that represents a single procedure. An SDG is an extension
that allows us to represent programs with multiple procedures
and calls among them. They were first proposed in [18]. To
build the SDG of a program, the PDGs of the procedures
are connected with each other through edges that model
procedure calls. The use of SDGs for hardware descriptions
was first proposed for Model Checking [19]. To use SDGs with
hardware descriptions, we need some additional considerations
due to the different computational paradigm between hardware
and software [19]. SDGs are at the base of the heuristics that
we propose to select the obfuscation points. In particular, we
use System Dependence Graphs to analyze the impact of the
obfuscation points prior to actual RTL simulation.

III. RTL LOCKING FRAMEWORK

We propose an RTL obfuscation framework (see Figure 1)
to easily evaluate overheads and metrics of obfuscated de-
signs and perform optimizations under area or key budget
constraints. The workflow begins with the parsing of the HDL
code to extract the Abstract Syntax Tree (AST) of the design.
The AST is analyzed to extract the SDG and to identify the
obfuscation points. The SDG has a node for each statement.
A statement may have zero, one, or many obfuscation points.
So, each obfuscation point is associated with a unique SDG
node, while each SDG node is associated with an arbitrary
number of obfuscation points.

We evaluate a set of heuristics combinations by analyzing
the SDG. Heuristics give a score to each obfuscation point that

Fig. 1: Framework flow caption

can either be a positive (rewarding) or negative (punishing)
number. For each combination of heuristics we build a score
table that associates each obfuscation point with its final score,
obtained by summing the scores of the heuristics. All the
obfuscation points that correspond to the same SDG node have
the same score. To avoid obfuscating all the obfuscation points
of a statement before moving to the next one, we scale the
score of all the obfuscation points that share the same SDG
node as follows:

SOPx =
x · SOPx

n
, x = 1, ... , n

Where OP1, ..., OPn are obfuscation points that share the
same SDG node.

Given a score table, we can generate a solution in two
ways. The first approach selects the obfuscation points with
the highest score until we reach the constraints. A second
approach uses a probabilistic approach. We map the scores
in the range [0.25, 0.75] and use this value as the probability
of selecting the obfuscation point. So the obfuscation point
with the lowest score will be obfuscated with a probability of
25% while the obfuscation point with the highest score will
be obfuscated with a probability of 75%.

The framework represents an obfuscation solution as a
binary string where each element represents an obfuscation
point, if the ith element of the string is 1, the ith obfuscation
point is locked, otherwise it is not locked. The order of the
obfuscation points is the one in which they are found in a
depth first search on the AST of the design to be obfuscated.

The solution generation and the solution evaluation phases
are decoupled to allow us to test different methods under
different constraints.

The solutions are evaluated measuring the differential en-
tropy, the key size, and the estimated area overhead. The area
overhead is estimated as follows:

AreaOverhead = α · C + β ·B + γ ·O



Where C, B and O are the number of bits used for obfuscating
constants, branches and operations respectively. α, β and
γ are parameters that can be either given by the designer
or estimated by the framework. To estimate the overheads
parameters, the framework measures the mean percentage
overhead for each type of obfuscation point. To do so, it
synthesizes and measures the area of the plain design and
of three obfuscated designs, each of them obfuscating all the
obfuscation points of the specific category. Let Dp be the plain
design, Dc be the design obtained by obfuscating all and only
the constants, Db be the design obtained by obfuscating all and
only the conditional branches, and Do be the design obtained
by obfuscating all and only the operations. Then α, β and γ
are obtained as follows:

α =

(
Area(Dc)

Area(Dp)
− 1

)
· 1

#key bits(Dc)

β =

(
Area(Db)

Area(Dp)
− 1

)
· 1

#key bits(Db)

γ =

(
Area(Do)

Area(Dp)
− 1

)
· 1

#key bits(Do)

IV. SDG EXTRACTION

We built a tool for SDG extraction from Verilog1 designs.
We took inspiration from the considerations made in [19] to
build SDGs for HDL, with some changes to adapt them to
obfuscation analysis. Below is reported a brief description of
how we extracted System Dependence Graphs from Verilog
designs.

Let GAB be the PDG of an always block AB, then
GAB is a directed graph with several types of edges. The
vertices v1, v2, ..., vn represent the assignment statement and
control predicates that are present in AB. The edges represent
dependencies between the nodes with an edge e = (v1, v2)
meaning that v2 is dependent on v1.

Verilog presents two kind of assignments that can occur in
an always block: blocking (=) and non-blocking (<=) as-
signments. Blocking assignments behave in a sequential way,
like assignments in software languages, while non-blocking
assignments present a more complex behaviour. When the
always block is activated at a specific time-step, all the right
hand sides (RHS) of non-blocking assignments are captured.
Only at the end of the time-step the captured RHS values
are assigned to the respective left-hand sides. The behaviour
of non-blocking assignments makes it impossible to have a
dependency between two non-blocking assignments at a given
time step. It is possible though to have dependency occur
between two different activations of the same always block.
It is a common practice to use non-blocking assignments
within clocked always blocks to model registers.

Let us consider the lines below within an always block
sensitive on the positive clock edge:

1Our SDG extraction procedure is not limited to Verilog designs, but
implementation details may vary due to language specific features.

A <= Z;
B <= A + Y;
C <= B + W;

The order of the non-blocking assignments does not affect the
behaviour of the always block. At clock cycle X the value
of Z is assigned to A but is not propagated to B. It is only
at cycle X + 1 that the value of Z is propagated to B. For
this reason we distinguish between direct dependencies and
inter-cycle dependencies.

Definition 1. We have a direct dependency from v1 to v2 if
and only if v1 is a predicate vertex, and the execution of v2
depends on the truth of v1; or v1 is a blocking assignment
vertex with some signal X in the left-hand side that is used
in v2, and there exists an execution path from v1 to v2 along
which there is no assignment to X.

Fig. 2: Example of direct dependencies

Definition 2. We have an inter-cycle dependency from v1 to
v2 if and only if v1 is a non-blocking assignment with some
signal X in the left-hand side that is used in v2.

Fig. 3: Example of inter-cycle dependencies

We assume to have only one kind of assignment in each
always block. This is a general practice in hardware design.

Figure 4 illustrates the workflow to extract the SDG of a
Verilog module. We analyse each module extracting a PDG
from each always block, a continuous assignment vertex for
each continuous assignment, an input vertex for each input,
and an output vertex for each output. Then we proceed adding
edges between all these entities merging them into an SDG.
When checking the dependency from a given assign vertex (of
any kind) v1 to a vertex v2 within a PDG P1, we add a direct
dependency edge if there is some signal X in the lhs of v1 and
X is used in v2 and X is in the sensitivity list of P1. We add
an inter-cycle dependency edge if there is some signal X in
the lhs of v1 and X is used in v2 and X is not in the sensitivity
list of P1.



Fig. 4: SDG extraction flow

When a module instantiates a sub-module we insert a
“placeholder vertex” connected with a coupling vertex for each
input/output of the sub-module. Coupling vertices represent
the port mapping for the sub-module. After extracting a SDG
from each module we perform flattening starting from the
top module. Each instance vertex is substituted with the
SDG of the corresponding module and coupling nodes are
connected with the corresponding inputs and outputs with
direct dependency edges (Fig. 5).

Fig. 5: Example of module flattening

V. SCORING HEURISTICS

We propose a set of heuristics that give a score to the
obfuscation points based on an analysis of the SDG. The
higher the score of an obfuscation point, the higher is the
probability to pick it. A scoring function can either be re-
warding, i.e. increasing the score of an obfuscation point, or
punishing, i.e. decreasing the score of an obfuscation point.
We identified two main categories of scoring functions: local
and global functions. Local functions explore the SDG up
to a certain distance from each obfuscation point whereas
global functions do not bound the exploration of the SDG.
The scoring functions can be used in a composable way, i.e.
any subset of the proposed scoring functions can be used to
compute the scores that are in turn used to rank the obfuscation
points. To avoid having one scoring heuristic dominating all

the others, we normalized all the scores for each scoring
heuristic in the range [0, 100].

A. Control Disabling

This heuristic takes as argument a set of controlling signals
divided as input and output signals. It disable the obfuscation
points that would compromise the control outputs by assigning
them a value of −∞. It disable the parents of the control
outputs and conditions that have a controlling input as parent.
This allows us to avoid obfuscating those points that would
cause simulation failures, yielding entropy 0 by definition.

B. Bounded (Direct) Children

The bounded children function takes as arguments an ob-
fuscation point O and a distance D. It returns the number of
(direct) assignments and conditions up to a distance D from O
that are dependent from O. This function favors obfuscation
points that have a higher propagation in the design. These
points have a higher probability of having a wider influence
on the outputs. In fact, a node with a high number of children
in the dependence graph, is a node that influences a relevant
portion of the design.

C. Bounded Parents

The bounded parents function takes as arguments an ob-
fuscation point O and a distance D. It returns the number of
obfuscation points up to a distance D from O that converge in
O. This function favors the obfuscation points that have a high
convergence. These points are the most convenient to take in
order to build longer sequences of obfuscated points. Longer
sequences of obfuscated points are harder to brake.

Fig. 6: Highlighting nodes that contribute to the score of an
obfuscation point for a given heuristic

D. Max I/O Path Length

The maximum input output path length is a function that
assigns a value to each obfuscation point O. The value is
equal to the maximum number of obfuscation points that can
be found in a path from an input to an output that passes
through O. This function aims at favoring obfuscation points
that can build longer obfuscation sequences. It has the same
goal of bounded parents, it trades off higher computational
complexity for more accurate results.



VI. EXPERIMENTAL SETUP

We implemented a prototype framework leveraging Pyver-
ilog [20], a Python-based Hardware Design Processing Toolkit
for Verilog HDL. We used Pyverilog to parse the Verilog
design and create its abstract syntax tree (AST). The SDG
extraction explores the AST leveraging the NodeVisitor
class defined in Pyverilog. Our framework works on the AST
and, once the obfuscation step is finished, Pyverilog generates
the obfuscated Verilog description ready for logic synthesis.
We picked five designs from the MIT-LL Common Evaluation
Platform (CEP) [21] to be evaluated with our framework.
Two of these benchmarks (FIR and IIR) were generated using
SPIRAL [22], a hardware generator. The selected benchmarks
are a subset of those used in [5] as we had to build a test-
bench to measure the metrics for each third-party design. For
a design house it should not be a problem to adapt a test bench
to work with our framework.

TABLE I: Characteristics of RTL benchmarks

Design Modules Const Ops Branches # Bits SDG nodes

FIR 5 10 24 0 344 157
IIR 5 19 43 0 651 231
SHA256 3 159 36 2 4,992 619
MD5 2 150 50 1 4,533 829
DES3 11 523 3 775 2,990 3,745

Table I reports the number of obfuscation points for each
category, the maximum number of key bits, and the number
of nodes of the SDG for the considered benchmarks.

The framework runs the synthesis of the designs using
Synopsys Design Compiler R-2020.09-SP1 targeting the Nan-
gate 15nm ASIC technology at standard operating conditions
(25°C). For the behavioral simulations we used Synopsys vcs.
The choice of the RTL tools is arbitrary and the framework
can be adapted to work with different tools. To calculate the
mean differential entropy we estimated the output probability
running 10,000 simulations obtained by combining 100 ran-
dom keys with 100 random inputs.

The first empirical results showed that the behaviour of the
heuristics is dependent on the design and on the strictness of
the constraint. It is difficult to predict in advance which heuris-
tic will perform better in a given case. Since the techniques are
not computationally intensive we run a set of scoring heuristic
combinations, giving as outcome the best result that we obtain.

We compared our results against a design space exploration
approach at RTL like the one presented in [6] for HLS and
against topological-order obfuscation like ASSURE [5]. To
do so, we implemented a genetic algorithm that generates
solutions for our framework. The evaluation is performed in
the same way.

From the first tests, increasing the distance parameter for the
bounded heuristics has a flattening effect on the obfuscation
points, reducing the performances. For this reason, we set a
distance of 3 for the bounded children heuristic and 2 for the
bounded parents.

TABLE II: Naming scheme for heuristics.

Heuristic Abbreviation

Bounded children NCHILD
Bounded direct children DCHILD
Bounded parents NPAR
Max I/O path LPATH

For each benchmark, we ran the framework with 20 different
constraints on the key budget as follows: 1, 2, 3, 4, 5, 7.5, 10,
15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100% of the
maximum number of key bits. The framework was configured
to optimize the mean differential entropy of the design and
to evaluate the area overhead. The best solution was selected
as the one with mean differential entropy within 0.001 from
the best value and with the lowest estimated area overhead.
We evaluated mean differential entropy and estimated area
overhead with respect to topological order obfuscation. We
looked at which technique achieves the best results more often
for different key budgets (1-5%, 7.5-25%, 30-50%, 60-100%,
1-100%). We also evaluated the error of the area estimation
of the best results by running the synthesis of the obfuscated
solutions and comparing them with the estimated value.

We ran the following combinations of scoring heuristics
with both in-order and probabilistic solution generation:
• Control disabling and bounded direct children
• Control disabling and bounded children
• Control disabling and bounded parents
• Control disabling and max I/O path length
• Control disabling, bounded direct children, bounded par-

ents and max I/O path length
• Control disabling, bounded children, bounded parents and

max I/O path length
We also ran control disabling alone with probabilistic gen-
eration, resulting in a random solution excluding controlling
points. For the different combinations we used the naming
scheme reported in Table II.

If the solution was generated with the probabilistic ap-
proach, we also added ”PROB” as prefix.

VII. EXPERIMENTAL RESULTS

From the first runs where we ran the heuristic combinations
alone, there is not a single heuristics that always performs
better than the others. Figure 7 shows that certain heuristics
are more likely to yield a best result when used within a certain
key budget interval. Only NPAR LPATH DCHILD never gen-
erated a best solution, while all other heuristic combinations
yielded a best solution at least twice. The probabilistic solution
generation is the best technique to build solutions when the key
budget is close to 100% since it yields solutions using less or
equal bits than the given budget, whereas in-order generation
forces the use of the full budget. For this reason probabilistic
generation finds better solutions when we reach the point in
which obfuscating more will decrease the differential entropy.

Figure 8 shows the entropy results for each key budget,
highlighting the technique that generated the best solution. Dif-
ferent techniques show to work better on different designs and



32%
16%

16%

8%
8%

4%
4%

4%
4%

4%

48%

12%
8%

8%

8%
8%

4%
4%

20%16%

16%

12%
8%

4%
4%

4%
4%

4%
4%
4%

68%

8%
8%

4%
4%
4%
4%

42%

9%
7%

6%

6%

6%

6%

4%
4%

3% 3%
2%

2%

RANDOM
PROB NPAR
PROB NCHILD
NPAR LPATH NCHILD
NPAR
TOPOLOGICAL
LPATH
PROB DCHILD
PROB LPATH
PROB NPAR LPATH DCHILD
PROB NPAR LPATH NCHILD
NCHILD
DCHILD

1-5 % key budget 7.5-25% key budget 30-50% key budget

60-100% key budget 1-100% key budget

Fig. 7: Technique frequencies for key budget intervals across
all designs

different key budget intervals. Figure 9 shows the comparison
with topological obfuscation. The results show that topological
obfuscation presents a higher variability in the entropy results
and yields a best solution only in 6% of the cases. Figure 10
shows how modifying the order of the sub-modules instances
results in a huge difference in the mean differential entropy
values of the topological order solution while the composable
heuristics results only change slightly where the best solution
comes from a probabilistic generation.

Figure 11 shows that the estimated area of the solutions
found by the heuristics is either very close to or lower than
topological obfuscation. Figure 12 shows the evaluation of the
area estimation. For FIR, IIR and SHA256 the area estimation
is very close to the actual area across all points. On the other
hand, DES and MD5 show a big discrepancy between the
estimated area and the measured one. Mean values are reported
in Table III. Obfuscating sparse points yields unpredictable
changes in the synthesis optimization phase sometimes caus-
ing larger overheads. The area evaluation method may be
improved to take additional features into consideration for
designs that present this behaviour.

Table IV shows a comparison with the genetic algorithm for
design space exploration. The two approaches obtain values
that are very close with the proposed combined heuristic
approach being 100 to 400 times faster, where applicable.
The reported time for composable heuristics is the total time
to evaluate the full set of heuristic combinations that we
considered for a given key budget, for the design space
exploration approach is the time of an exploration for a given
key budget. We did not consider the time to calculate the
area estimation parameters as it is done only once. This result
shows how the proposed methodology scales much better for
large designs.

VIII. RELATED WORK

Numerous techniques have been proposed to thwart reverse
engineering of hardware designs. They can be divided in

TABLE III: Area overhead mean relative error (m.r.e.)

Design Area Overhead m.r.e. [%]

FIR 13.40
IIR 19.93
MD5 100.72
DES3 55.16
SHA256 5.63

ALL 38.97

two classes: key-less obfuscation, such as split manufactur-
ing, camouflaging, watermarking and fingerprinting, and key-
based obfuscation, such as logic locking. Split manufacturing
divides the manufacturing process between different untrusted
foundries [23]. IC camouflaging prevents netlist extraction by
introducing subtle cell design changes at the GDS level [24].
Watermarking and fingerprinting aim at simplifying detection
and tracking of illegal copies of the design [25]. Logic locking
idea is to apply modifications to the design that make it
functional only when the correct key, unknown to the foundry,
is applied [26]. Obfuscation techniques can be applied at all
steps of the IC design flow, post-synthesis techniques work
either at transistor [27] or netlist level [28], [29]. Pre-synthesis
techniques can be applied at either RTL [5] or HLS [30], [31].

Locking techniques aim at thwarting reverse engineering in
scenarios where the attacker has access to the design files.
Locking techniques depend on the threat model. In case the
attacker has access to a working chip (oracle) the technique
must be resilient towards SAT attacks [32]. When no oracle
is available, attacks can rely only on the design files [11],
[33] which should not reveal any information about the real
structure of the design.

The main research thread in the area is about proposing
new techniques preventing new kind of attacks or new attacks
against existing techniques. Optimising the overhead intro-
duced by logic locking has only recently started to be in-
vestigated [6]. This work is focused on techniques to improve
the efficiency of logic locking at RTL from a security metric
vs overheads viewpoint. Working at RTL allows for a wider
integration on IC design workflows. The obfuscated netlists
are obtained with commercial synthesis tools.

IX. CONCLUSION

The proposed obfuscation framework aims at optimising a
security metric under either area or number of key bits con-
straints. Operating at RTL makes our solution compatible with
all IC design flows. Our methodology drastically decreases
the computational power required compared to existing tech-
niques, enabling us to target larger designs. The entropy results
are better than the ones obtained by applying obfuscation in
topological order for 94% of the cases. With our methodology
the security metric results do not depend on the topological
order of the design. Interesting research directions include the
evaluation of new analyses on the SDG, the development of
new estimators for overheads, and the possibility of performing
multi-constrained optimization.



0 100 200 300
0.5

0.6

0.7

0.8

0.9

1

1.1

# bits

En
tro

py

(a) FIR

0 100 200 300 400 500 600
0.5

0.6

0.7

0.8

0.9

1

1.1

# bits

En
tro

py

(b) IIR

0 1000 2000 3000 4000
0.5

0.6

0.7

0.8

0.9

1

1.1

# bits

En
tro

py

(c) MD5

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0.8

0.9

1

1.1

# bits

En
tro

py

(d) DES3

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0.8

0.9

1

1.1

# bits

En
tro

py

(e) SHA256
Fig. 8: Differential entropy results, highlighting the heuristic yielding the best solution

0 50 100 150 200 250 300 350

0

0.2

0.4

0.6

0.8

1

Entropy heuristics
Entropy TO

# bits

En
tro

py

(a) FIR

0 100 200 300 400 500 600

0

0.2

0.4

0.6

0.8

1

# bits

En
tro

py

(b) IIR

0 1000 2000 3000 4000

0

0.2

0.4

0.6

0.8

1

# bits

En
tro

py

(c) MD5

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

# bits

En
tro

py

(d) DES3

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

# bits

En
tro

py

(e) SHA256
Fig. 9: Differential entropy comparison with topological obfuscation

TABLE IV: Comparison with DSE approach at 4 key budget constraints

Composable Heuristics DSE
Design Mean differential entropy Time [min] Mean differential entropy Time [min]

25% 50% 70% 100% 25% 50% 75% 100%

FIR 0.999853 0.999967 0.999746 0.999935 2 0.999963 1.000000 1.000000 0.999997 240
IIR 0.999236 0.999582 0.999633 0.999842 3 0.999964 0.999999 0.999999 0.999993 360
MD5 0.999939 0.999364 0.999832 0.999832 3 0.999954 0.999952 0.999952 0.999952 450
DES3 0.999947 0.999513 0.998356 0.996788 4 0.999963 0.999957 0.999960 0.999960 600
SHA256 0.993654 0.993307 0.951003 0.951003 3 0.999540 0.999665 0.999665 0.999665 1300

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Entropy heuristics
Entropy TO

# bits

En
tro

py

0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

# bits

En
tro

py

Fig. 10: Impact of inverting sub-module instances in SHA256

REFERENCES

[1] S. Saha, “Emerging business trends in the microelectronics industry,”
Open Journal of Business and Management, vol. 04, pp. 105–113, 2016.

[2] US Department of Justice, “Departments of Justice and Homeland
Security Announce 30 Convictions, More Than $143 Million in Seizures
from Initiative Targeting Traffickers in Counterfeit Network Hardware,”
Available at: https://archives.fbi.gov/archives/news/pressrel/press-
releases/departments-of-justice-and-homeland-security-announce-30-
convictions-more-than-143-million-in-seizures-from-initiative-targeting-
traffickers-in-counterfeit-network-hardware (Last accessed: April 1,
2020), 2010.

[3] Omdia, “Top 5 Most Counterfeited Parts Represent a $169 Billion
Potential Challenge for Global Semiconductor Market,” Available
at: https://www.electronicproducts.com/top-5-most-counterfeited-parts-
represent-a-169-billion-potential-challenge-for-global-semiconductor-
market/ (Last accessed: November 1, 2020), 2012.

[4] ERAI, “ERAI Reported Parts Statistics,” Available at:
https://www.erai.com/erai blog/3167/ 2019 erai reported parts statistics
(Last accessed: April 1, 2020), 2019.

[5] C. Pilato, A. B. Chowdhury, D. Sciuto, S. Garg, and R. Karri, “ASSURE:
RTL locking against an untrusted foundry,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, pp. 1–13, 2021.

[6] C. Pilato, L. Collini, L. Cassano, D. Sciuto, S. Garg, and R. Karri,
“On the Optimization of Behavioral Logic Locking for High-Level
Synthesis,” arXiv:2105.09666, 2021.

[7] R. S. Rajarathnam, Y. Lin, Y. Jin, and D. Z. Pan, “ReGDS: A Reverse
Engineering Framework from GDSII to Gate-level Netlist,” in IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST), 2020, pp. 154–163.

[8] K. Shamsi, M. Li, K. Plaks, S. Fazzari, D. Z. Pan, and Y. Jin, “IP
Protection and Supply Chain Security through Logic Obfuscation: A
Systematic Overview,” ACM Trans. Des. Autom. Electron. Syst., vol. 24,
2019.

[9] N. Limaye, E. Kalligeros, N. Karousos, I. G. Karybali, and O. Sinanoglu,
“Thwarting All Logic Locking Attacks: Dishonest Oracle with Truly
Random Logic Locking,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, pp. 1–1, 2020.

[10] N. Limaye, A. B. Chowdhury, C. Pilato, M. T. M. Nabeel, O. Sinanoglu,
S. Garg, and R. Karri, “Fortifying RTL Locking Against Oracle-Less
(Untrusted Foundry) and Oracle-Guided Attacks,” ACM/IEEE Design
Automation Conference (DAC), 2021.

[11] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine Learning
Guided Structural Analysis Attack on Hardware Obfuscation,” in Asian
Hardware Oriented Security and Trust Symposium (AsianHOST), 2018,
pp. 56–61.

[12] C. Prabuddha, J. Cruz, and B. Swarup, “SURF: Joint Structural Func-
tional Attack on Logic Locking,” in IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2019, pp. 181–190.

[13] D. Sisejkovic, F. Merchant, L. M. Reimann, H. Srivastava, A. Hallawa,
and R. Leupers, “Challenging the Security of Logic Locking Schemes
in the Era of Deep Learning: A Neuroevolutionary Approach,” J. Emerg.
Technol. Comput. Syst., vol. 17, no. 3, 2021.

[14] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic Locking
for Secure Outsourced Chip Fabrication: A New Attack and Provably
Secure Defense Mechanism,” arXiv:1703.10187, 2017.

[15] L. Li and A. Orailoglu, “Piercing Logic Locking Keys through Redun-
dancy Identification,” Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 540–545, 2019.



0 100 200 300
0

50

100

150

200

250

300

350
Estimated area overhead heuristics
Estimated area overhead TO

# bits

A
re

a 
ov

er
he

ad
 [%

]

(a) FIR

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350

# bits

A
re

a 
ov

er
he

ad
 [%

]

(b) IIR

0 1000 2000 3000 4000
0

50

100

150

200

250

300

350

# bits

A
re

a 
ov

er
he

ad
 [%

]

(c) MD5

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

# bits

A
re

a 
ov

er
he

ad
 [%

]

(d) DES3

0 500 1000 1500 2000 2500 3000
0

50

100

150

200

250

300

350

# bits

A
re

a 
ov

er
he

ad
 [%

]

(e) SHA256
Fig. 11: Area estimation comparison with topological obfuscation

0 100 200 300

−50

0

50

100

150

200

250

300

350
Estimated area overhead
Measured area overhead
Area overhead error

# bits

A
re

a 
ov

er
he

ad
 [%

]

(a) FIR

0 100 200 300 400 500 600

−50

0

50

100

150

200

250

300

350

# bits

A
re

a 
ov

er
he

ad
 [%

]

(b) IIR

0 1000 2000 3000 4000

−50

0

50

100

150

200

250

300

350

# bits

A
re

a 
ov

er
he

ad
 [%

]

(c) MD5

0 500 1000 1500 2000 2500 3000

−50

0

50

100

150

200

250

300

350

# bits

A
re

a 
ov

er
he

ad
 [%

]

(d) DES3

0 500 1000 1500 2000 2500 3000

−50

0

50

100

150

200

250

300

350

# bits

A
re

a 
ov

er
he

ad
 [%

]

(e) SHA256
Fig. 12: Area estimation evaluation

[16] S. Amir, B. Shakya, X. Xu, Y. Jin, S. Bhunia, M. M. Tehranipoor,
and D. Forte, “Development and Evaluation of Hardware Obfuscation
Benchmarks,” Journal of Hardware and Systems Security, vol. 2, pp.
142–161, 2018.

[17] D. Kuck, Y. Muraoka, and S.-C. Chen, “On the number of operations
simultaneously executable in fortran-like programs and their resulting
speedup,” IEEE Transactions on Computers, vol. C-21, no. 12, pp. 1293–
1310, 1972.

[18] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing Using
Dependence Graphs,” in Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, 1988, p. 35–46.

[19] S. Vasudevan, E. A. Emerson, and J. A. Abraham, “Efficient Model
Checking of Hardware Using Conditioned Slicing,” Electron. Notes
Theor. Comput. Sci., vol. 128, p. 279–294, 2005.

[20] S. Takamaeda-Yamazaki, “”Pyverilog: A Python-Based Hardware De-
sign Processing Toolkit for Verilog HDL”,” in Applied Reconfigurable
Computing, K. Sano, D. Soudris, M. Hübner, and P. C. Diniz, Eds.,
2015, pp. 451–460.

[21] MIT Lincoln Laboratory, “Common Evaluation Platform (CEP),” Avail-
able at: https://github.com/mit-ll/CEP.

[22] SPIRAL team, “SPIRAL software/hardware generation for perfor-
mance,” Available at: https://www.spiral.net/index.html.

[23] T. D. Perez and S. Pagliarini, “A Survey on Split Manufacturing:
Attacks, Defenses, and Challenges,” IEEE Access, vol. 8, pp. 184 013–
184 035, 2020.

[24] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit
Camouflage Integration for Hardware IP Protection,” in Proceedings of
the 51st Annual Design Automation Conference, 2014, p. 1–5.

[25] A. Abdel-Hamid, S. Tahar, and E. M. Aboulhamid, “A Survey on IP
Watermarking Techniques,” Design Autom. for Emb. Sys., vol. 9, pp.
211–227, 2004.

[26] A. Chakraborty, N. G. Jayasankaran, Y. Liu, J. Rajendran, O. Sinanoglu,
A. Srivastava, Y. Xie, M. Yasin, and M. Zuzak, “Keynote: A Disquisition
on Logic Locking,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, pp. 1952–1972, 2020.

[27] M. M. Shihab, J. Tian, G. R. Reddy, B. Hu, W. Swartz, B. Carrion Schae-
fer, C. Sechen, and Y. Makris, “Design Obfuscation through Selective
Post-Fabrication Transistor-Level Programming,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2019, pp. 528–533.

[28] M. Yasin, J. J. Rajendran, O. Sinanoglu, and R. Karri, “On Improving
the Security of Logic Locking,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, pp. 1411–1424, 2016.

[29] A. Sengupta, M. Ashraf, M. Nabeel, and O. Sinanoglu, “Customized
Locking of IP Blocks on a Multi-Million-Gate SoC,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2018,
pp. 1–7.

[30] C. Pilato, F. Regazzoni, R. Karri, and S. Garg, “TAO: Techniques for

Algorithm-Level Obfuscation during High-Level Synthesis,” in Proceed-
ings of the 55th Annual Design Automation Conference, 2018.

[31] M. Yasin, C. Zhao, and J. J. Rajendran, “SFLL-HLS: Stripped-
Functionality Logic Locking Meets High-Level Synthesis,” in
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 2019, pp. 1–4.

[32] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “Circuit
Obfuscation and Oracle-Guided Attacks: Who Can Prevail?” in Pro-
ceedings of the on Great Lakes Symposium on VLSI, 2017, p. 357–362.

[33] Y. Zhang, P. Cui, Z. Zhou, and U. Guin, “TGA: An Oracle-Less and
Topology-Guided Attack on Logic Locking,” in Proceedings of the
3rd ACM Workshop on Attacks and Solutions in Hardware Security
Workshop, 2019, p. 75–83.


