Composable Heuristics for Register-Transfer Level Logic Locking Optimization

Luca Collini luca.collini@mail.polimi.it CSE

Supervisor: Prof. Christian Pilato

- Introduction to Hardware IP Protection
- Problem Definition
- Overview of the Approach: Heuristics for RTL Locking
- Implementation Details
- Experimental Evaluation

Outline

- Introduction to Hardware IP Protection
- Problem Definition
- Overview of the Approach: Heuristics for RTL Locking
- Implementation Details
- Experimental Evaluation

Outline

Globalization of the IC supply chain

Security threats

Reverse Engineering

Intellectual Property theft

total loss from IC counterfeiting was estimated to be about \$169 billions in 2011

80% of reported counterfeited parts in 2019 were never reported before

Malicious modifications

planned obsolescence trojans

backdoor insertion

attempted trade of counterfeited Cisco equipment to the US Department of Defense

Thwarting reverse engineering

- Introduction to Hardware IP Protection
- Problem Definition
- Overview of the Approach: Heuristics for RTL Locking
- Implementation Details
- Experimental Evaluation

Outline

Threat Model

Oracle: a chip that performs correct computation key inputs

Oracle-less scenario with **distinct ambiguity** The attacker has no oracle but can distinguish data and control signals

- **Ambiguity**: ability of an attacker to distinguish between primary inputs and

Constant obfuscation

Semantic Obfuscation

Operation obfuscation

Semantic Obfuscation

Branch obfuscation

Semantic Obfuscation

Mean Differential Entropy:

$$H = \sum_{i=1}^{N} \left(P_i \cdot \log \frac{1}{P_i} + (1 - P_i) \cdot \log \frac{1}{1 - P_i} \right) \cdot \frac{1}{N}$$

$$P_{i} = \frac{\sum_{w=1}^{N} \sum_{t=1}^{M} OUT[i]_{t} \bigoplus OUT[i]_{t,w}}{N \cdot M}$$

Security Evaluation

Problems of Logic Locking

- Logic locking introduces Area, Power, and Timing overheads
- Netlist Locking

 - Post-synthesis obfuscation Information embedded in the netlist Obfuscation of random points May yield invalid designs
- RTL Locking
 - Obfuscation in topological order Design dependent solutions
- HLS Locking

DSE for obfuscation optimization High computational cost

Contributions

Untrusted foundry

- RTL locking framework
- Signal dependency analysis
- Optimization under area and key-bit constraints

- Introduction to Hardware IP Protection
- Problem Definition
- Overview of the Approach: Heuristics for RTL Locking
- Implementation Details
- Experimental Evaluation

Outline

RTL Locking Framework

- Dependence analysis
- Composable scoring heuristics
- Area overhead estimations

HDL code

Score Table & Solution Representation

if ((x <= 10)^key[0]) m = key[1] ? z-k : z+k; else m = z + w;res = (key[2]?(a|b) : (a^b)) + m + key[3:10];

obfuscated Verilog code

Heuristic Combination

127	2

- Introduction to Hardware IP Protection
- Problem Definition
- Overview of the Approach: Heuristics for RTL Locking
- Implementation Details
- Experimental Evaluation

Outline

SDG extraction flow

Dependencies

• Direct Dependence

Inter-cycle Dependence

From PDG to SDG

```
module sum(clk, rst, add1, add2, sum_res);
input clk, rst;
input [31:0] add1, add2;
output [31:0] sum_res;
reg [31:0] add1_reg, add2_reg;
assign sum_res = add1_reg + add2_reg;
```

```
always @(posedge clk, rst) begin
     if (rst) begin
          add1_reg <= 0;
          add2_reg <= 0;
     end
     else begin
          add1_reg <= add1;
          add2_reg <= add2;
     end
endmodule
```


sum SDG

Module Flattening

Representation of the entire design from inputs to outputs

Control Disabling

Scoring Heuristics

Avoid obfuscation of points that cause simulation failures

Bounded (Direct) Children

Scoring Heuristics

Reward points that influence a big design portion

- Direct dependency
- ----- Inter-cycle dependency

Assuming OPX associated with SDG node NX: bounded children(OP2, 3) = 6 bounded_children(OP5, 3) = 5 bounded_direct_children(OP2, 3) = **0** bounded direct parents(OP5, 3) = 2

Bounded Parents

Scoring Heuristics

Reward points with high convergence

- Assuming OPX associated with SDG node NX:
- bounded_parents(OP4, 2) = 1
- bounded_parents(OP6, 2) = 3

Max I/O Path Length

Scoring Heuristics

Reward long chains of obfuscation points

Assuming OPX associated with SDG node NX: Paths:

P1: IN1-N1-N3-N4-N7-OUT;	#OP = 4
P2: IN1-N1-N3-N4-N8-OUT;	#OP = 4
P3: IN1-N1-N3-N6-OUT;	#OP = 3
P4: IN1-N1-N4-N7-OUT;	#OP = 3
P5: IN1-N1-N4-N8-OUT;	#OP = 3
P6: IN2-N2-N4-N8-OUT;	#OP = 3
P7: IN2-N5-N8-OUT;	#OP = 2

For each Opx we search Nx in the paths and assign the length of the first path in which Nx is found.

Score Table:

OP1 = 4	OP5 = 2
OP2 = 3	OP6 = 3
OP3 = 4	OP7 = 4
OP4 = 4	OP8 = 4

Selection Methods

- Introduction to Hardware IP Protection
- Problem Definition
- Overview of the Approach: Heuristics for RTL Locking
- Implementation Details
- Experimental Evaluation

Outline

Experimental Setup

Benchmarks

Benchmarks from CEP-MIT for evaluating security solutions

Design	Modules	Const	Ops	Branches	# Bits	SDG nodes
FIR	5	10	24	0	344	157
IIR	5	19	43	0	651	231
SHA256	3	159	36	2	4,992	619
MD5	2	150	50	1	4,533	829
DES3	11	523	3	775	2,990	3,745

1, 2, 3, 4, 5, 7.5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100% of key budget

Experimental Results

- No dominant heuristic
- Better than ASSURE in 92% of the cases

Experimental Results

Random obfuscation selects obfuscation points that lead to invalid designs

FIR

MD5

Experimental Results

- Results comparable to DSE approach
- Heuristics are much faster (100-400 times)

	Composable Heuristics				DSE					
Design	n Mean differential entropy		Time [min]	Mean differential entropy			Time			
	25%	50%	70%	100%		25%	50%	75%	100%	
FIR	0.999853	0.999967	0.999746	0.999935	2	0.999963	1.000000	1.000000	0.999997	
IIR	0.999236	0.999582	0.999633	0.999842	3	0.999964	0.999999	0.999999	0.999993	
MD5	0.999939	0.999364	0.999832	0.999832	3	0.999954	0.999952	0.999952	0.999952	
DES3	0.999947	0.999513	0.998356	0.996788	4	0.999963	0.999957	0.999960	0.999960	
SHA256	0.993654	0.993307	0.951003	0.951003	3	0.999540	0.999665	0.999665	0.999665	

Average degradation: 0.005888

Conclusion

- Best results in highly constrained scenarios
- Better than ASSURE in 92% of the cases
- Enables optimized obfuscation on more complex designs

Future work:

- New SDG analyses
- New overhead estimators
- Multi-objective optimization

Thank you for your attention!

Luca Collini luca.collini@mail.polimi.it

Supervisor: Prof. Christian Pilato

Best accuracy in highly constrained scenarios

(d) DES3

(a) FIR

(d) DES3

(b) IIR

(c) MD5

(a) FIR

(d) DES3

(b) IIR

(c) MD5

Errata Corrige

Design	Area Overhead m.r.e. [%]
FIR	25.07
IIR	26.93
MD5	179.47
DES3	123.87
SHA256	70.36
ALL	75.20

Design	Area Overhead m.a.e. [%]
FIR	12.24
IIR	18.39
MD5	84.87
DES3	41.95
SHA256	70.36
ALL	75.20

