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Algorithmic Game Theory

“Game theory is the name given to the methodology of using mathematical tools to 
model and analyse situations of interactive decision making. These are situations 
involving several decision makers (called players) with different goals, in which the 
decision of each affects the outcome for all the decision makers.”

M. Maschler, E. Solan, S. Zamir. “Game Theory”. 2013

• Algorithmic Game Theory is the area at the intersection between Game Theory 
and Computer Science



Games

A game is a description of strategic interaction including:
• the constraints on the actions that the players can take
• players’ interests, expressed as utilities for given outcomes of the game

A solution is a systematic description of the strategies that may emerge in a family 
of games, given a specific definition of rationality of the players.
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A game is a description of strategic interaction including:
• the constraints on the actions that the players can take
• players’ interests, expressed as utilities for given outcomes of the game

A solution is a systematic description of the strategies that may emerge in a family 
of games, given a specific definition of rationality of the players.

Game theory suggests reasonable solutions for classes of games and examines 
their properties.
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A simple example: Rock Paper Scissors

Characteristics of the game:

• 2 Players choosing 1 action concurrently

• Utility: zero-sum game
• +1 for winning player
• 0 in case of draw
• -1 for losing player

• Winning player determined by those rules: 

GOAL: Get the most possible expected utility, with no possibility of being exploited
by a learning playerSTRATEGY: play a uniform random action          
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Games used as benchmarks of algorithms in the past years:

GO

Perfect Information setting
All the information characterizing a game state is 
available to all players 

⇒no need to remember past history of action to 
characterize the strategic situation

< 10170 possible discrete states

Alpha Go 2015
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HOLD’EM POKER

Imperfect Information setting
Cards held by opponents are hidden

⇒history of play is needed to characterize the 
strength of their hands

⇒randomized action are needed at each state to 
not disclose too much information

< 6 ⋅ 10165 possible discrete states mainly due to betting

Libratus 2017
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STARCRAFT 2

Imperfect Information setting
Opponent’s resources hidden, map visibility

⇒History and contextual information needed to 
describe current state

~ continuous states since physical interaction in a 3D world

AlphaStar 2019
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Benchmark Games
Games used as benchmarks of algorithms in the past years:

HANABI

Imperfect Information setting
Own cards are hidden

Collaborative Game

OPEN CHALLENGE!

2 to 5 players Game
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Real World applications of algorithmic game theory:

AUTONOMOUS CAR RACING

Imperfect Information setting
Concurrent execution of actions

Adversarial Setting

⇒ need of a strategy to manage 
interaction with adversary’s trajectory

Multiple Goals:
• Stay inside
• Do not collide
• Stay ahead
• Increment progess vs adversary
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Real World applications of algorithmic game theory:

MICRO-LEVEL FIGHTS CONTROL
Coordinate Control of individual units

Imperfect Information setting
Concurrent execution of actions

Adversarial Setting

⇒ need of a strategy to manage fight with 
adversary

Coordination required across a team of agents
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MACRO-LEVEL SECURITY GAMES
Strategic decision of Attack and Defence
resource allocation

Imperfect Information setting
Concurrent execution of actions

Adversarial Setting

⇒ need of a strategy to manage 
interaction with adversary
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Game Representation

Games can be represented as
Decision Trees

Each player in the game has
to choose one possible action 
from the available ones
whenever it is their turn

The payoff is determined at
the end depending on the 
sequence of actions taken
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Game Representation
Extensive Form Representation = game represented as a Tree (states are nodes)

Perfect Information setting
Each node in the game can be uniquely 
identified by the player

⇒perfect knowledge of opponent’s and own 
past

A Strategy is a representation of probability 
distribution of actions at each node

Alice’s strategy: A1 - L: 0.5, R:0.5 mixed strategy

Bob’s strategy:  B1 – a:1.0, b:0.0
B2 – c:0.0, d:1.0 pure strategy
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Game Representation
Extensive Form Representation = game represented as a Tree (states are nodes)

Imperfect Information setting
Information set constraint for Bob: he must 
play the same strategy at each node in the 
same infoset

⇒some nodes are indistinguishable for him, 
since he is not expected to know the 
action played by Alice

Alice’s strategy: P1 - R: 0.2, P:0.3, S:0.5
Bob’s strategy:  P2 – r:0.33, p:0.33, s:0.33

Alice

Bob



Nash Equilibrium
A Nash Equilibrium is a joint combination of strategies stable with respect to 
unilateral deviations of a single player 



Nash Equilibrium
A Nash Equilibrium is a joint combination of strategies stable with respect to 
unilateral deviations of a single player 
[i.e. no player can gain more utility by changing part of his/her strategy, given the opponent plays a fixed strategy] 
∼ local optimum



Nash Equilibrium
A Nash Equilibrium is a joint combination of strategies stable with respect to 
unilateral deviations of a single player 

r p s

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

[i.e. no player can gain more utility by changing part of his/her strategy, given the opponent plays a fixed strategy] 
∼ local optimum



Nash Equilibrium
A Nash Equilibrium is a joint combination of strategies stable with respect to 
unilateral deviations of a single player 

Strategy Profile 1:

Alice - R:1.0, P:0.0, S:0.0
Bob - r:0.5, p:0.5, s:0.0
Not a Nash Equilibrium → Bob would deviate to P:1.0

Strategy Profile 2:

Alice - R:0.33, P:0.33, S:0.33
Bob - r:0.33, p:0.33, s:0.33
Nash Equilibrium → No one can increase payoff

r p s

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

[i.e. no player can gain more utility by changing part of his/her strategy, given the opponent plays a fixed strategy] 
∼ local optimum



Nash Equilibrium
A Nash Equilibrium is a joint combination of strategies stable with respect to 
unilateral deviations of a single player 

Strategy Profile 1:

Alice - R:1.0, P:0.0, S:0.0
Bob - r:0.5, p:0.5, s:0.0
Not a Nash Equilibrium → Bob would deviate to P:1.0

Strategy Profile 2:

Alice - R:0.33, P:0.33, S:0.33
Bob - r:0.33, p:0.33, s:0.33
Nash Equilibrium → No one can increase payoff

r p s

R 0,0 -1,1 1,-1

P 1,-1 0,0 -1,1

S -1,1 1,-1 0,0

By finding Nash Equilibria, we can find stable strategies that express rationally stable situations

[i.e. no player can gain more utility by changing part of his/her strategy, given the opponent plays a fixed strategy] 
∼ local optimum
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LP techniques
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DREAM [Steinberger et al, 2020]

REBEL [Brown et al, 2020]

Correlated Equilibria [Aumann, 1974]
EF(C)CE, AF(C)CE variants

Hindsight Rationality [Morril et al, 2020]

Team Maxmin Equilibria
[VonStengel and Koller, 1997]

Internal Regret minimizers 
[Hart, MasColell, 2000]

CFR-Jr [Celli et al, 2019] 

ICFR [Celli et al 2020]

Normal-Form algorithms, efficiency
bounds [Basilico et al, 2016]

Extensive-form definition, efficiency
bounds , HCG algorithm

[Celli and Gatti 2017]

FTP [Farina and Celli, 2018]

STAC [Celli et al, 2019]

SIMS [Cacciamani et al, 2020]

Our Focus will be on Team Games:

• 2 players Zero sum games already refined

solutions and bigger research groups working

• General sum games are a possibility

• Team Games are a topic of great expertise of the 

research team, and an already established

environment is available



Team Games

Team Games can be characterized as N vs M players zero-sum games, in which all
members of the same team have identical payoffs

In our research we will focus on 2 vs 1 games

(1,1,-2) (1,1,-2)(-1,-1,2) (-1,-1,2) (-1,-1,2) (-1,-1,2) (-1,-1,2) (-1,-1,2)
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Team Maxmin Equilibrium
Possible Solution Concepts:

TME = Team Players maximize their value against a minimizing adversary. 
Team Members cannot communicate if not prescribed by the game

⇒ Base case, no communication infrastructure available among players

⇒ NP-Hard to find

TME:
A - l:0.5 r:0.5
P1 - A:0.5 B:0.5
P2 - E:0.5 F:0.5
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Team Maxmin Equilibrium
Possible Solution Concepts:

TMECor = Team Players maximize their value against a minimizing adversary. 
Team Members can communicate before the game starts

⇒ Coordination in randomization of actions can be achieved

⇒ Modeled as a common signal extracted at start of the game

TMECor:
A - l:0.5 r:0.5
S - s1: 0.5 s2:0.5

P1 - A if s1, B if s2
P2 – E if s1, F if s2 
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Possible Solution Concepts:

TMEComm = Team Players maximize their value against a minimizing adversary. 
Team Members can communicate at any moment 

⇒ Observations are completely shared

⇒ Team Players can effectively operate as a single player ⇒ Algorithms for 2 players 
zero sum games can be 

employed

TMEComm:
A - l:0.5 r:0.5
P1+P2 - AE:0.5 BF:0.5
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Considerations:

Communication can be really useful in team games
From [Celli and Gatti, 2017]:
Value provided by a TMECor can be arbitrarily larger with respect to a TME
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Team Maxmin Equilibrium
Considerations:

Communication can be really useful in team games
From [Celli and Gatti, 2017]:
Value provided by a TMECor can be arbitrarily larger with respect to a TME
Value provided by a TMEComm can be arbitrarily larger with respect to a TMECor

Pre Game coordination across team members is easily 
implementable in many contexts

In Game communication across team members cannot 
be implemented in many contexts

Examples:
Card Games, Security Scenarios

Can we find a TMECor for a given Team Game?

Scopone scientifico, Bridge, Briscola
Coordinated Micromanagement of agents
Coordinated Macromanagement of resources
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Algorithms for TME
Hybrid Column Generation [Celli and Gatti, 2017]
= Two LPs formulated on a progressively larger hybrid formulation of the game
= Integer LP oracle to find the next Joint Strategy to add

ORIGINAL
GAME

HYBRID
GAME

Add one possible joint strategies to 
be associated with signals

Construct hybrid representation

Initial Signal sampling

Evaluate value of computed strategy

Approximation can be obtained by relaxing binary constraints of BR oracle
Integer LP limits scalability
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Fictitious Team Play [Farina and Celli, 2018]
= Iterative Best Response computation to average strategy of adversary
= Best Response as an MILP

ORIGINAL
GAME

AUXILIARY
GAME

Compute Best Response to past
strategies for both Adversay and Team

Construct Auxiliary game
In which TMECor corresponds to a NE

Faster than HCG
Slower empirical convergence rate of FP
MILP limits scalability
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Algorithms for TME
Soft Team Actor Critic [Celli et al, 2019]
= Iterative gradient descent over the space of possible parameters
= Actor-Critic RL Framework

ORIGINAL
GAME

Evaluate current policy by playing one 
instance of the game

SIGNALER

CURRENT 

STATE

PROBABILITY 

OVER ACTIONS

Perform an Actor-Critic update of the 
hypernetwork encoding the policy 

given the signal

No requirements of model available ⇒ no manipulation of original game needed
Fixed number of uniform signals ⇒ no guarantees of convergence
No Robustness of result due to noise from fixed uniform signals and gradient descent
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ORIGINAL
GAME

Join team players

AUXILIARY
GAME

Solve using 2 players zero 
sum techniques

Signal Mediated Strategies [Cacciamani et al, 2020]
= Centralized Training merging team players and creating a joint strategy
= Learn marginalized policies for decentralized execution conditioned by a signal

Model free but convergence to a TMECor guaranteed
Strong Assumptions on game structure



Overview

1. Introduction to Algorithmic Game Theory

2. Main Questions

3. Preliminaries

4. State of the art

5. Project proposal



Our Proposed Approach



Our Proposed Approach

ORIGINAL
GAME



Our Proposed Approach

ORIGINAL
GAME

Construct Auxiliary game
In which TMECor corresponds to a NE



Our Proposed Approach

ORIGINAL
GAME

AUXILIARY
GAME

Construct Auxiliary game
In which TMECor corresponds to a NE



Our Proposed Approach

ORIGINAL
GAME

AUXILIARY
GAME

Adversary plays using CFR
Team will respond using a BR

Construct Auxiliary game
In which TMECor corresponds to a NE



Our Proposed Approach

ORIGINAL
GAME

AUXILIARY
GAME

Adversary plays using CFR
Team will respond using a BR

Construct Auxiliary game
In which TMECor corresponds to a NE

Build on Top of Auxiliary Game Framework used in Fictitious Team Play
BUT
• Employ CFR-BR to have a faster convergence rate in place of FP
• Use an approximated RL approach with fewer guarantees to solve BR problem



Our Proposed Approach

ORIGINAL
GAME

AUXILIARY
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Adversary plays using CFR
Team will respond using a BR

Construct Auxiliary game
In which TMECor corresponds to a NE

Build on Top of Auxiliary Game Framework used in Fictitious Team Play
BUT
• Employ CFR-BR to have a faster convergence rate in place of FP
• Use an approximated RL approach with fewer guarantees to solve BR problem

⇒ Probabilistic Guarantee of convergence
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Our Proposed Approach
Qualitative Comparison of different approaches

Hybrid Column
Generation

Fictitious Team 
Play

Soft Team 
Actor-Critic

Signal Mediated
Strategies

OUR PROPOSAL

Typologies of games solved Optimality Guarantees Scalability
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Our Proposed Approach

Validation Procedures:

• Comparison of approximate Team-BR 
procedures on Random Games:

→ Mixed ILP formulation of HCG and FTP
→ Approximate BR with Iterated LP
→ Approximate BR using RL

• Comparison with Fictitious Team Play and 
Hybrid Column Generation algorithms:

→ Kuhn Poker 2vs1

→ Leduc Poker 2vs1 → for more extensive environment, and testing 
scalability capabilities by changing number of cards 
[456 infosets per player]

→ for small environment and preliminary results 
[16 infosets per player]



Thanks for the attention!
Any Question?


