Research Project Proposal: Neural Function Approximation for Adversarial Team Games

Luca Carminati luca5.carminati@mail.polimi.it CSE Track

- **1.** Introduction to Algorithmic Game Theory
- 2. Main Questions
- 3. Preliminaries
- 4. State of the art
- 5. Project proposal

1. Introduction to Algorithmic Game Theory

- 2. Main Questions
- 3. Preliminaries
- 4. State of the art
- 5. Project proposal

Algorithmic Game Theory

"Game theory is the name given to the methodology of using mathematical tools to model and analyse situations of interactive decision making. These are situations involving several decision makers (called players) with different goals, in which the decision of each affects the outcome for all the decision makers."

M. Maschler, E. Solan, S. Zamir. "Game Theory". 2013

 Algorithmic Game Theory is the area and Computer Science

• Algorithmic Game Theory is the area at the intersection between Game Theory

Games

- A game is a description of strategic interaction including: • the *constraints* on the actions that the players can take • players' interests, expressed as *utilities* for given outcomes of the game

of games, given a specific definition of rationality of the players.

A **solution** is a systematic description of the strategies that may emerge in a family

Games

- A game is a description of strategic interaction including: • the *constraints* on the actions that the players can take • players' interests, expressed as *utilities* for given outcomes of the game

of games, given a specific definition of rationality of the players.

A **solution** is a systematic description of the strategies that may emerge in a family

Game theory suggests reasonable solutions for classes of games and examines their properties.

Characteristics of the game:

Characteristics of the game:

• 2 Players choosing 1 action concurrently

Characteristics of the game:

- 2 Players choosing 1 action concurrently
- Utility: *zero-sum game*
 - +1 for winning player
 - 0 in case of draw
 - -1 for losing player

Characteristics of the game:

- 2 Players choosing 1 action concurrently
- Utility: *zero-sum game*
 - +1 for winning player
 - 0 in case of draw
 - -1 for losing player
- Winning player determined by those rules:

Characteristics of the game:

- 2 Players choosing 1 action concurrently
- Utility: *zero-sum game*
 - +1 for winning player
 - 0 in case of draw
 - -1 for losing player
- Winning player determined by those rules:

by a learning player

Games

GOAL: Get the most possible expected utility, with no possibility of being exploited

Characteristics of the game:

- 2 Players choosing 1 action concurrently
- Utility: *zero-sum game*
 - +1 for winning player
 - 0 in case of draw
 - -1 for losing player
- Winning player determined by those rules:

STRATEGY: play a uniform random action

 $\frac{1}{3}$ Rock, $\frac{1}{3}$ Paper, $\frac{1}{3}$ Scissor

Games used as benchmarks of algorithms in the past years:

Games used as benchmarks of algorithms in the past years:

<u>CHESS</u>

Perfect Information setting

All the information characterizing a game state is available to all players

Games used as benchmarks of algorithms in the past years:

<u>CHESS</u>

Perfect Information setting

All the information characterizing a game state is available to all players

⇒no need to remember past history of action to characterize the strategic situation

Games used as benchmarks of algorithms in the past years:

<u>CHESS</u>

Perfect Information setting

All the information characterizing a game state is available to all players

- ⇒no need to remember past history of action to characterize the strategic situation
- $< 10^{50}$ possible **discrete states**

Games used as benchmarks of algorithms in the past years:

<u>CHESS</u>

Perfect Information setting

All the information characterizing a game state is available to all players

- ⇒no need to remember past history of action to characterize the strategic situation
- $< 10^{50}$ possible **discrete states**

Deep Blue, 1996

Games used as benchmarks of algorithms in the past years:

<u>GO</u>

Games used as benchmarks of algorithms in the past years:

<u>G0</u>

Perfect Information setting

All the information characterizing a game state is available to all players

Games used as benchmarks of algorithms in the past years:

<u>G0</u>

Perfect Information setting

All the information characterizing a game state is available to all players

Games used as benchmarks of algorithms in the past years:

<u>G0</u>

Perfect Information setting

All the information characterizing a game state is available to all players

⇒no need to remember past history of action to characterize the strategic situation

Games used as benchmarks of algorithms in the past years:

<u>GO</u>

Perfect Information setting

All the information characterizing a game state is available to all players

- ⇒no need to remember past history of action to characterize the strategic situation
- $< 10^{170}$ possible **discrete states**

Games used as benchmarks of algorithms in the past years:

<u>GO</u>

Perfect Information setting

All the information characterizing a game state is available to all players

- ⇒no need to remember past history of action to characterize the strategic situation
- $< 10^{170}$ possible **discrete states**

Games used as benchmarks of algorithms in the past years:

HOLD'EM POKER

Games used as benchmarks of algorithms in the past years:

HOLD'EM POKER

Imperfect Information setting Cards held by opponents are hidden

Games used as benchmarks of algorithms in the past years:

HOLD'EM POKER

Imperfect Information setting

Cards held by opponents are hidden

- \Rightarrow history of play is needed to characterize the strength of their hands
- \Rightarrow randomized action are needed at each state to not disclose too much information

Games used as benchmarks of algorithms in the past years:

HOLD'EM POKER

Imperfect Information setting

Cards held by opponents are hidden

- \Rightarrow history of play is needed to characterize the strength of their hands
- \Rightarrow randomized action are needed at each state to not disclose too much information

 $< 6 \cdot 10^{165}$ possible **discrete states** mainly due to betting

Games used as benchmarks of algorithms in the past years:

HOLD'EM POKER

Imperfect Information setting

Cards held by opponents are hidden

- \Rightarrow history of play is needed to characterize the strength of their hands
- \Rightarrow randomized action are needed at each state to not disclose too much information
- $< 6 \cdot 10^{165}$ possible **discrete states** mainly due to betting

Libratus 2017

Games used as benchmarks of algorithms in the past years:

STARCRAFT 2

Games used as benchmarks of algorithms in the past years:

STARCRAFT 2

Imperfect Information setting

Opponent's resources hidden, map visibility

Games used as benchmarks of algorithms in the past years:

STARCRAFT 2

Imperfect Information setting

Opponent's resources hidden, map visibility

 \Rightarrow History and contextual information needed to describe current state

Games used as benchmarks of algorithms in the past years:

STARCRAFT 2

Imperfect Information setting

Opponent's resources hidden, map visibility

- \Rightarrow History and contextual information needed to describe current state
- \sim **continuous states** since physical interaction in a 3D world

Games used as benchmarks of algorithms in the past years:

STARCRAFT 2

Imperfect Information setting

Opponent's resources hidden, map visibility

- \Rightarrow History and contextual information needed to describe current state
- \sim **continuous states** since physical interaction in a 3D world

Games used as benchmarks of algorithms in the past years:

Games used as benchmarks of algorithms in the past years:

<u>HANABI</u>

Imperfect Information setting Own cards are hidden

Games used as benchmarks of algorithms in the past years:

<u>HANABI</u>

Imperfect Information setting Own cards are hidden

Collaborative Game
Benchmark Games

Games used as benchmarks of algorithms in the past years:

<u>HANABI</u>

Imperfect Information setting Own cards are hidden

Collaborative Game

2 to 5 players Game

Benchmark Games

Games used as benchmarks of algorithms in the past years:

HANABI

Imperfect Information setting Own cards are hidden

Collaborative Game

2 to 5 players Game

OPEN CHALLENGE!

Real World applications of algorithmic game theory:

AUTONOMOUS CAR RACING

Real World applications of algorithmic game theory:

AUTONOMOUS CAR RACING

Imperfect Information setting Concurrent execution of actions

Real World applications of algorithmic game theory:

AUTONOMOUS CAR RACING

Imperfect Information setting Concurrent execution of actions

Adversarial Setting

Real World applications of algorithmic game theory:

AUTONOMOUS CAR RACING

Imperfect Information setting Concurrent execution of actions

Adversarial Setting

 \Rightarrow need of a strategy to manage interaction with adversary's trajectory

Real World applications of algorithmic game theory:

AUTONOMOUS CAR RACING

Imperfect Information setting Concurrent execution of actions

Adversarial Setting

 \Rightarrow need of a strategy to manage interaction with adversary's trajectory

Multiple Goals:

- Stay inside
- Do not collide
- Stay ahead
- Increment progess vs adversary

Real World applications of algorithmic game theory:

MICRO-LEVEL FIGHTS CONTROL Coordinate Control of individual units

Real World applications of algorithmic game theory:

MICRO-LEVEL FIGHTS CONTROL Coordinate Control of individual units

Imperfect Information setting Concurrent execution of actions

Real World applications of algorithmic game theory:

MICRO-LEVEL FIGHTS CONTROL Coordinate Control of individual units

Imperfect Information setting Concurrent execution of actions

Adversarial Setting

Real World applications of algorithmic game theory:

MICRO-LEVEL FIGHTS CONTROL Coordinate Control of individual units

Imperfect Information setting Concurrent execution of actions

Adversarial Setting

 \Rightarrow need of a strategy to manage fight with adversary

Real World applications of algorithmic game theory:

MICRO-LEVEL FIGHTS CONTROL Coordinate Control of individual units

Imperfect Information setting Concurrent execution of actions

Adversarial Setting

 \Rightarrow need of a strategy to manage fight with adversary

Coordination required across a <u>team</u> of agents

Real World applications of algorithmic game theory:

MACRO-LEVEL SECURITY GAMES

Strategic decision of Attack and Defence resource allocation

Real World applications of algorithmic game theory:

MACRO-LEVEL SECURITY GAMES Strategic decision of Attack and Defence resource allocation

Imperfect Information setting Concurrent execution of actions

Real World applications of algorithmic game theory:

MACRO-LEVEL SECURITY GAMES Strategic decision of Attack and Defence resource allocation

Imperfect Information setting Concurrent execution of actions

Adversarial Setting

Real World applications of algorithmic game theory:

MACRO-LEVEL SECURITY GAMES Strategic decision of Attack and Defence resource allocation

Imperfect Information setting Concurrent execution of actions

Adversarial Setting

 \Rightarrow need of a strategy to manage interaction with adversary

1. Introduction to Algorithmic Game Theory

- 2. Main Questions
- 3. Preliminaries
- 4. State of the art
- 5. Project proposal

Overview

Main Questions

How can we compactly describe Games and Strategies of players?

How can we compactly describe Games and Strategies of players?

How can we characterize stable strategic outcomes of players' interaction?

How can we compactly describe Games and Strategies of players?

How can we characterize stable strategic outcomes of players' interaction?

Given a game, how can we find the strategies played at one such equilibrium?

1. Introduction to Algorithmic Game Theory

- 2. Main Questions
- 3. Preliminaries
- 4. State of the art
- 5. Project proposal

Overview

Games can be represented as **Decision Trees**

Each player in the game has to **choose one possible action** from the available ones **whenever it is their turn**

The **payoff** is determined at the end **depending on the sequence of actions** taken Product Launch Strategy

Extensive Form Representation = game represented as a Tree (states are nodes)

Extensive Form Representation = game represented as a Tree (states are nodes)

Perfect Information setting

Each node in the game can be uniquely identified by the player

 \Rightarrow perfect knowledge of opponent's and own past

Extensive Form Representation = game represented as a Tree (states are nodes)

Perfect Information setting

Each node in the game can be uniquely identified by the player

 \Rightarrow perfect knowledge of opponent's and own past

A <u>Strategy</u> is a representation of probability distribution of actions at each node

Extensive Form Representation = game represented as a Tree (states are nodes)

Perfect Information setting

Each node in the game can be uniquely identified by the player

- \Rightarrow perfect knowledge of opponent's and own past
- A <u>Strategy</u> is a representation of probability distribution of actions at each node
- Alice's strategy: A1 L: 0.5, R:0.5 mixed strategy Bob's strategy: B1 – a:1.0, b:0.0 B2 – c:0.0, d:1.0 *pure strategy*

Extensive Form Representation = game represented as a Tree (states are nodes)

Extensive Form Representation = game represented as a Tree (states are nodes)

Imperfect Information setting

Information set constraint for Bob: he must play the same strategy at each node in the same infoset

 \Rightarrow some nodes are indistinguishable for him, since he is not expected to know the action played by Alice

Extensive Form Representation = game represented as a Tree (states are nodes)

Imperfect Information setting

Information set constraint for Bob: he must play the same strategy at each node in the same infoset

 \Rightarrow some nodes are indistinguishable for him, since he is not expected to know the action played by Alice

Alice's strategy: P1 - R: 0.2, P:0.3, S:0.5 Bob's strategy: P2 – r:0.33, p:0.33, s:0.33

A **Nash Equilibrium** is a joint combination of strategies stable with respect to unilateral deviations of a single player

A **Nash Equilibrium** is a joint combination of strategies stable with respect to unilateral deviations of a single player

~ local optimum

- *[i.e. no player can gain more utility by changing part of his/her strategy, given the opponent plays a fixed strategy]*

A **Nash Equilibrium** is a joint combination of strategies stable with respect to unilateral deviations of a single player

~ local optimum

	r	р	S
R	0,0	-1,1	1,-1
Р	1,-1	0,0	-1,1
S	-1,1	1,-1	0,0

- *[i.e. no player can gain more utility by changing part of his/her strategy, given the opponent plays a fixed strategy]*

A **Nash Equilibrium** is a joint combination of strategies stable with respect to unilateral deviations of a single player

[i.e. no player can gain more utility by changing part of his/her strategy, given the opponent plays a fixed strategy] ~ local optimum

	r	р	S	
R	0,0	-1,1	1,-1	
Ρ	1,-1	0,0	-1,1	
S	-1,1	1,-1	0,0	

<u>Strategy Profile 1:</u> Alice - R:1.0, P:0.0, S:0.0 Bob - r:0.5, p:0.5, s:0.0 **Not a Nash Equilibrium → Bob would deviate to P:1.0**

Strategy Profile 2:
Alice - R:0.33, P:0.33, S:0.33
Bob - r:0.33, p:0.33, s:0.33
Nash Equilibrium → No one can increase payoff

A **Nash Equilibrium** is a joint combination of strategies stable with respect to unilateral deviations of a single player

[i.e. no player can gain more utility by changing part of his/her strategy, given the opponent plays a fixed strategy] ~ local optimum

	r	р	S	<u>Strat</u> Alic Bob
R	0,0	-1,1	1,-1	Not
Р	1,-1	0,0	-1,1	<u>Strat</u> Δlic
S	-1,1	1,-1	0,0	Bob

By finding Nash Equilibria, we can find stable strategies that express rationally stable situations

tegy Profile 1: e - R:1.0, P:0.0, S:0.0 - r:0.5, p:0.5, s:0.0 a Nash Equilibrium \rightarrow Bob would deviate to P:1.0

tegy Profile 2: e - R:0.33, P:0.33, S:0.33 - r:0.33, p:0.33, s:0.33 Nash Equilibrium \rightarrow No one can increase payoff

1. Introduction to Algorithmic Game Theory

- 2. Main Questions
- 3. Preliminaries
- 4. State of the art
- 5. Project proposal

Overview
Solution Concept Definition	 	 	
Iterative Algorithms to find Equilibria			

General categorization of state of the art:

Solution Concept Definition	How can we characterize
Iterative Algorithms to find Equilibria	

e stable strategic outcomes of players' interaction?

General categorization of state of the art:

Solution Concept Definition	How can we characterize
Iterative Algorithms to find Equilibria	Given a game, how can su

e stable strategic outcomes of players' interaction?

we find the strategies played at one ch equilibrium?

r 	2 Players Zero Sum Games	General Sum Games	Team Games
Solution Concept Definition			
Iterative Algorithms to find Equilibria			

r 	2 Players Zero Sum Games	General Sum Games	Team Games
Solution Concept Definition	Nash Equilibria [Nash, 1954]		
Iterative Algorithms to find Equilibria			

	2 Players Zero Sum Games	General Sum Games	Team Games
Solution Concept Definition	Nash Equilibria [Nash, 1954]		
Iterative Algorithms to find Equilibria	Tabular algorithms:LP techniquesCFR [Zinkevich et al, 2008]Expansions: Abstraction, Sampling, Discounting, SearchXFP [Heinrich et al, 2015]Neural Approximating algorithms:NFSP [Heinrich et al, 2015]DEEP CFR [Brown et al, 2016]DEEP CFR [Brown et al, 2018]DREAM [Steinberger et al, 2020]REBEL [Brown et al, 2020]		

	2 Players Zero Sum Games	General Sum Games	Team Games
Solution Concept Definition	Nash Equilibria [Nash, 1954]	Correlated Equilibria [Aumann, 1974] EF(C)CE, AF(C)CE variants Hindsight Rationality [Morril et al, 2020]	
Iterative Algorithms to find Equilibria	Tabular algorithms: LP techniques CFR [Zinkevich et al, 2008] Expansions: Abstraction, Sampling, Discounting, Search XFP [Heinrich et al, 2015] Neural Approximating algorithms: NFSP [Heinrich et al, 2016] DEEP CFR [Brown et al, 2018] DREAM [Steinberger et al, 2020]		

	2 Players Zero Sum Games	General Sum Games	Team Games
Solution Concept Definition	Nash Equilibria [Nash, 1954]	Correlated Equilibria [Aumann, 1974] EF(C)CE, AF(C)CE variants Hindsight Rationality [Morril et al, 2020]	
Iterative Algorithms to find Equilibria	Tabular algorithms: LP techniques CFR [Zinkevich et al, 2008] Expansions: Abstraction, Sampling, Discounting, Search XFP [Heinrich et al, 2015] Neural Approximating algorithms: NFSP [Heinrich et al, 2016] DEEP CFR [Brown et al, 2018] DREAM [Steinberger et al, 2020] REBEL [Brown et al, 2020]	Internal Regret minimizers [Hart, MasColell, 2000] CFR-Jr [Celli et al, 2019] ICFR [Celli et al 2020]	

	2 Players Zero Sum Games	General Sum Games	Team Games
Solution Concept Definition	Nash Equilibria [Nash, 1954]	Correlated Equilibria [Aumann, 1974] EF(C)CE, AF(C)CE variants Hindsight Rationality [Morril et al, 2020]	Team Maxmin Equilibria [VonStengel and Koller, 1997]
Iterative Algorithms to find Equilibria	Tabular algorithms:LP techniquesCFR [Zinkevich et al, 2008]Expansions: Abstraction, Sampling, Discounting, SearchXFP [Heinrich et al, 2015]Neural Approximating algorithms:NFSP [Heinrich et al, 2015]DEEP CFR [Brown et al, 2016]DEEP CFR [Brown et al, 2018]DREAM [Steinberger et al, 2020]REBEL [Brown et al, 2020]	Internal Regret minimizers [Hart, MasColell, 2000] CFR-Jr [Celli et al, 2019] ICFR [Celli et al 2020]	

	2 Players Zero Sum Games	General Sum Games	Team Games
Solution Concept Definition	Nash Equilibria [Nash, 1954]	Correlated Equilibria [Aumann, 1974] EF(C)CE, AF(C)CE variants Hindsight Rationality [Morril et al, 2020]	Team Maxmin Equilibria [VonStengel and Koller, 1997]
Iterative Algorithms to find Equilibria	Tabular algorithms: LP techniques CFR [Zinkevich et al, 2008] Expansions: Abstraction, Sampling, Discounting, Search XFP [Heinrich et al, 2015] Neural Approximating algorithms: NFSP [Heinrich et al, 2015] DEEP CFR [Brown et al, 2016] DEEP CFR [Brown et al, 2018] DREAM [Steinberger et al, 2020]	Internal Regret minimizers [Hart, MasColell, 2000] CFR-Jr [Celli et al, 2019] ICFR [Celli et al 2020]	Normal-Form algorithms, efficiency bounds [Basilico et al, 2016] Extensive-form definition, efficiency bounds , HCG algorithm [Celli and Gatti 2017] FTP [Farina and Celli, 2018] STAC [Celli et al, 2019] SIMS [Cacciamani et al, 2020]

General categorization of state of the art:

	2 Players Zero Sum Games
Solution Concept Definition	Corre Nash Equilibria [Nash, 1954] Our Focus will be on Team Games • 2 players Zero sum games alrea - solutions and bigger research
Iterative Algorithms to find Equilibria	• General sum games are a poss • Team Games are a topic of great Expansive research team, and an already environment is available XFP [Heinrich et al, 2015] Neural Approximating algorithms: NFSP [Heinrich et al, 2016] DEEP CFR [Brown et al, 2018] DREAM [Steinberger et al, 2020] REBEL [Brown et al, 2020]

General Sum Games

elated Equilibria [Aumann, 1974] EF(C)CE, AF(C)CE variants ight Rationality [Morril et al, 2020] S:

- ady refined
- groups workingsibility
- at expertise of the established

[Hart, MasColell, 2000] CFR-Jr [Celli et al, 2019] ICFR [Celli et al 2020]

Team Games

Team Maxmin Equilibria

[VonStengel and Koller, 1997]

Normal-Form algorithms, efficiency bounds [Basilico et al, 2016] Extensive-form definition, efficiency bounds , HCG algorithm [Celli and Gatti 2017] FTP [Farina and Celli, 2018]

> **STAC** [Celli et al, 2019] **SIMS** [Cacciamani et al, 2020]

members of the same team have *identical payoffs*

In our research we will focus on 2 vs 1 games

Team Games can be characterized as <u>N vs M players zero-sum games</u>, in which all

Possible Solution Concepts:

TME = Team Players maximize their value against a minimizing adversary. Team Members cannot communicate if not prescribed by the game

Possible Solution Concepts:

TME = Team Players maximize their value against a minimizing adversary.

- Team Members cannot communicate if not prescribed by the game
- \Rightarrow Base case, no communication infrastructure available among players

Possible Solution Concepts:

TME = Team Players maximize their value against a minimizing adversary.

 \Rightarrow NP-Hard to find

- Team Members cannot communicate if not prescribed by the game
- \Rightarrow Base case, no communication infrastructure available among players

Possible Solution Concepts:

TME = Team Players maximize their value against a minimizing adversary. \Rightarrow Base case, no communication infrastructure available among players

 \Rightarrow NP-Hard to find

Team Members cannot communicate if not prescribed by the game

TME: A - 1:0.5 r:0.5 P1 - A:0.5 B:0.5 P2 - E:0.5 F:0.5

Possible Solution Concepts:

TMECor = Team Players maximize their value against a minimizing adversary. Team Members can communicate before the game starts

Possible Solution Concepts:

TMECor = Team Players maximize their value against a minimizing adversary. Team Members can communicate before the game starts

- \Rightarrow Coordination in randomization of actions can be achieved

Possible Solution Concepts:

TMECor = Team Players maximize their value against a minimizing adversary. Team Members can communicate before the game starts

- \Rightarrow Coordination in randomization of actions can be achieved
- \Rightarrow Modeled as a common signal extracted at start of the game

Possible Solution Concepts:

TMECor = Team Players maximize their value against a minimizing adversary. Team Members can communicate before the game starts

- \Rightarrow Coordination in randomization of actions can be achieved
- \Rightarrow Modeled as a common signal extracted at start of the game

TMECor: A - 1:0.5 r:0.5 S - s1: 0.5 s2:0.5

P1 - A if s1, B if s2 P2 – E if s1, F if s2

Possible Solution Concepts:

TMEComm = Team Players maximize their value against a minimizing adversary. Team Members can communicate at any moment

Possible Solution Concepts:

TMEComm = Team Players maximize their value against a minimizing adversary. Team Members can communicate at any moment

 \Rightarrow Observations are completely shared

Possible Solution Concepts:

Team Members can communicate at any moment

 \Rightarrow Observations are completely shared

- **TMEComm** = Team Players maximize their value against a minimizing adversary.

 - ⇒ Team Players can effectively operate as a single player

Possible Solution Concepts:

Team Members can communicate at any moment

 \Rightarrow Observations are completely shared

- **TMEComm** = Team Players maximize their value against a minimizing adversary.

 - \Rightarrow Team Players can effectively operate as a single player

 \Rightarrow Algorithms for 2 players zero sum games can be employed

Possible Solution Concepts:

Team Members can communicate at any moment

 \Rightarrow Observations are completely shared

- **TMEComm** = Team Players maximize their value against a minimizing adversary.

 - ⇒ Team Players can effectively operate as a single player

 \Rightarrow Algorithms for 2 players zero sum games can be employed

Considerations:

Considerations:

Communication can be really useful in team games From [Celli and Gatti, 2017]: Value provided by a TMECor can be arbitrarily larger with respect to a TME Value provided by a TMEComm can be arbitrarily larger with respect to a TMECor

Considerations:

Communication can be really useful in team games From [Celli and Gatti, 2017]: Value provided by a TMECor can be arbitrarily larger with respect to a TME Value provided by a TMEComm can be arbitrarily larger with respect to a TMECor

Pre Game coordination across team members is easily implementable in many contexts

Considerations:

Communication can be really useful in team games From [Celli and Gatti, 2017]: Value provided by a TMECor can be arbitrarily larger with respect to a TME Value provided by a TMEComm can be arbitrarily larger with respect to a TMECor

Pre Game coordination across team members is easily implementable in many contexts In Game communication across team members cannot be implemented in many contexts

Considerations:

Communication can be really useful in team games From [Celli and Gatti, 2017]: Value provided by a TMECor can be arbitrarily larger with respect to a TME Value provided by a TMEComm can be arbitrarily larger with respect to a TMECor

Pre Game coordination across team members is easily implementable in many contexts In Game communication across team members cannot be implemented in many contexts

Examples:

Card Games, Security Scenarios

Scopone scientifico, Bridge, Briscola *Coordinated Micromanagement of agents Coordinated Macromanagement of resources*

Considerations:

Communication can be really useful in team games From [Celli and Gatti, 2017]: Value provided by a TMECor can be arbitrarily larger with respect to a TME Value provided by a TMEComm can be arbitrarily larger with respect to a TMECor

Pre Game coordination across team members is easily implementable in many contexts In Game communication across team members cannot be implemented in many contexts

Can we find a TMECor for a given Team Game?

Examples:

Card Games, Security Scenarios

Scopone scientifico, Bridge, Briscola *Coordinated Micromanagement of agents Coordinated Macromanagement of resources*

Hybrid Column Generation [Celli and Gatti, 2017] = Two LPs formulated on a progressively larger hybrid formulation of the game = Integer LP oracle to find the next Joint Strategy to add

Hybrid Column Generation [Celli and Gatti, 2017] = Integer LP oracle to find the next Joint Strategy to add

= Two LPs formulated on a progressively larger hybrid formulation of the game

Hybrid Column Generation [Celli and Gatti, 2017] = Integer LP oracle to find the next Joint Strategy to add

Construct hybrid representation

ORIGINAL GAME

= Two LPs formulated on a progressively larger hybrid formulation of the game

Hybrid Column Generation [Celli and Gatti, 2017] = Integer LP oracle to find the next Joint Strategy to add

Construct hybrid representation

ORIGINAL GAME

= Two LPs formulated on a progressively larger hybrid formulation of the game

Hybrid Column Generation [Celli and Gatti, 2017] = Integer LP oracle to find the next Joint Strategy to add

Construct hybrid representation

ORIGINAL GAME

= Two LPs formulated on a progressively larger hybrid formulation of the game

Initial Signal sampling **HYBRID** GAME

Hybrid Column Generation [Celli and Gatti, 2017] = Integer LP oracle to find the next Joint Strategy to add

Construct hybrid representation

ORIGINAL GAME

= Two LPs formulated on a progressively larger hybrid formulation of the game

Evaluate value of computed strategy

Add one possible joint strategies to be associated with signals

Hybrid Column Generation [Celli and Gatti, 2017] = Integer LP oracle to find the next Joint Strategy to add

 \checkmark Approximation can be obtained by relaxing binary constraints of BR oracle X Integer LP limits scalability

= Two LPs formulated on a progressively larger hybrid formulation of the game

Evaluate value of computed strategy

Add one possible joint strategies to be associated with signals

Fictitious Team Play [Farina and Celli, 2018] = Iterative Best Response computation to average strategy of adversary = Best Response as an MILP

Fictitious Team Play [Farina and Celli, 2018] = Iterative Best Response computation to average strategy of adversary = Best Response as an MILP

Fictitious Team Play [Farina and Celli, 2018] = Iterative Best Response computation to average strategy of adversary = Best Response as an MILP

Construct Auxiliary game In which TMECor corresponds to a NE

ORIGINAL GAME

Fictitious Team Play [Farina and Celli, 2018] = Iterative Best Response computation to average strategy of adversary = Best Response as an MILP

Construct Auxiliary game *In which TMECor corresponds to a NE*

ORIGINAL GAME

AUXILIARY GAME

Fictitious Team Play [Farina and Celli, 2018] = Iterative Best Response computation to average strategy of adversary = Best Response as an MILP

Construct Auxiliary game *In which TMECor corresponds to a NE* **AUXILIARY** GAME

ORIGINAL GAME

Compute Best Response to past strategies for both Adversay and Team

Fictitious Team Play [Farina and Celli, 2018] = Iterative Best Response computation to average strategy of adversary = Best Response as an MILP

Construct Auxiliary game *In which TMECor corresponds to a NE* **ORIGINAL** GAME

✓ *Faster than HCG* **X** Slower empirical convergence rate of FP X MILP limits scalability

Compute Best Response to past strategies for both Adversay and Team

Soft Team Actor Critic [Celli et al, 2019] = Iterative gradient descent over the space of possible parameters = Actor-Critic RL Framework

Soft Team Actor Critic [Celli et al, 2019] = Iterative gradient descent over the space of possible parameters = Actor-Critic RL Framework

ORIGINAL GAME

Soft Team Actor Critic [Celli et al, 2019] = Iterative gradient descent over the space of possible parameters = Actor-Critic RL Framework

Perform an Actor-Critic update of the hypernetwork encoding the policy

Soft Team Actor Critic [Celli et al, 2019] = Iterative gradient descent over the space of possible parameters = Actor-Critic RL Framework

 \checkmark No requirements of model available \Rightarrow no manipulation of original game needed **X** Fixed number of uniform signals \Rightarrow no guarantees of convergence X No Robustness of result due to noise from fixed uniform signals and gradient descent

Perform an Actor-Critic update of the hypernetwork encoding the policy

Signal Mediated Strategies [Cacciamani et al, 2020] = Centralized Training merging team players and creating a joint strategy = Learn marginalized policies for decentralized execution conditioned by a signal

Signal Mediated Strategies [Cacciamani et al, 2020] = Centralized Training merging team players and creating a joint strategy = Learn marginalized policies for decentralized execution conditioned by a signal

Signal Mediated Strategies [Cacciamani et al, 2020] = Centralized Training merging team players and creating a joint strategy = Learn marginalized policies for decentralized execution conditioned by a signal

> Join team players **ORIGINAL** GAME

AUXILIARY GAME

Signal Mediated Strategies [Cacciamani et al, 2020] = Centralized Training merging team players and creating a joint strategy

= Learn marginalized policies for decentralized execution conditioned by a signal

Signal Mediated Strategies [Cacciamani et al, 2020] = Centralized Training merging team players and creating a joint strategy

Model free but convergence to a TMECor guaranteed **X** Strong Assumptions on game structure

= Learn marginalized policies for decentralized execution conditioned by a signal

1. Introduction to Algorithmic Game Theory

- 2. Main Questions
- 3. Preliminaries
- 4. State of the art
- 5. Project proposal

Overview

ORIGINAL GAME

Construct Auxiliary game *In which TMECor corresponds to a NE*

ORIGINAL GAME

Construct Auxiliary game *In which TMECor corresponds to a NE*

ORIGINAL GAME

AUXILIARY GAME

Construct Auxiliary game *In which TMECor corresponds to a NE*

ORIGINAL GAME

Adversary plays using CFR Team will respond using a BR

Build on Top of Auxiliary Game Framework used in Fictitious Team Play BUT

- Employ *CFR-BR* to have a faster convergence rate in place of FP
- \bullet

Adversary plays using CFR Team will respond using a BR

Use an approximated RL approach with fewer guarantees to solve BR problem

Build on Top of Auxiliary Game Framework used in Fictitious Team Play BUT

- Employ *CFR-BR* to have a faster convergence rate in place of FP
- \bullet

 \Rightarrow Probabilistic Guarantee of convergence

Adversary plays using CFR Team will respond using a BR

Use an approximated RL approach with fewer guarantees to solve BR problem

Typologies of games solved

Optimality Guarantees

Qualitative Comparison of different approaches

Scalability

Qualitative Comparison of different approaches

Typologies of games solved

Optimality Guarantees

Validation Procedures:

Validation Procedures:

- Comparison of approximate Team-BR lacksquareprocedures on Random Games:
 - \rightarrow Mixed ILP formulation of HCG and FTP
 - \rightarrow Approximate BR with Iterated LP
 - \rightarrow Approximate BR using RL

Validation Procedures:

Comparison of approximate Team-BR procedures on Random Games:

 \rightarrow Mixed ILP formulation of HCG and FTP \rightarrow Approximate BR with Iterated LP \rightarrow Approximate BR using RL

 Comparison with Fictitious Team Play and Hybrid Column Generation algorithms:

 \rightarrow Kuhn Poker 2vs1 \rightarrow for small environment and preliminary results [16 infosets per player]

 \rightarrow Leduc Poker 2vs1 \rightarrow for more extensive environment, and testing [456 infosets per player]

scalability capabilities by changing number of cards

Thanks for the attention! Any Question?