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1. Introduction to the research topic

Algorithmic Game Theory is a field of study at the intersection of Game Theory and Computer Science. Its
objective is to design algorithms capable of operating strategic decisions in complex environments, optimizing a
preference score over the possible outcomes. The complexity of the environment derives from uncertainties due
to the presence of imperfect information and/or other agents optimizing their own scores.

In particular, the main research areas related to this topic are:

• Game Theory for the representation of the environment and the desired properties of proposed solutions;

• Reinforcement Learning, Online Convex Optimization and Artificial Intelligence for what concerns the design of
autonomous agents;

• Theoretical Computer Science for the evaluation of hardness and complexity of the expected results.

Conferences and Journals

The high degree of multidisciplinarity characterizing the field implies the existance of many different relevant
conferences and journals. Those have been selected according to an heterogeneous set of criteria, to ensure a
complete evaluation. The main criteria used are:

• GGS1 and Microsoft Academic rankings2 to evaluate the quality of conferences;

• IP3 and Microsoft Academic rankings4 to evaluate the quality of journals;

• Acceptance rate;

• Number of influential articles and authors in the field;

• Opinion of researchers working in the field.

The most prestigious selected conferences, along with the research area they belong to, are:

• AAAI: Association for the Advancement of Artificial Intelligence - Artificial Intelligence;

• NIPS: Neural Information Processing Systems - Artificial Intelligence;

• IJCAI: International Joint Conference on Artificial Intelligence - Artificial Intelligence;

• AAMAS: Adaptive Agents and Multi-Agents Systems - Game Theory;

• ACM EC: Conference on Economics and Computation - Game Theory, Theoretical Computer Science

The most prestigious selected journals, along with the research area they belong to, are:

1The GII-GRIN-SCIE Conference Rating, 2018, http://gii-grin-scie-rating.scie.es/conferenceRating.jsf.
2https://academic.microsoft.com/conferences/.
3Impact Factor: the number of citations received in that year of articles published in a specific journal during the two preceding

years,divided by the total number of publications in that journal during the two preceding years
4https://academic.microsoft.com/journals/.
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• Artificial Intelligence - Artificial Intelligence;

• arXiv: Artificial Intelligence - Artificial Intelligence;

• Journal of Artificial Intelligence Research - Artificial Intelligence;

• Games and Economic Behavior - Game Theory;

• International Journal of Game Theory - Game Theory;

• Algorithmica - Theoretical Computer Science.

1.1. Preliminaries

The main needed concepts to understand the field of work are presented in the following. We will focus on
needed game theoretical notions for game representation and online learning tools for learning agents.

1.1.1 Games, Strategies, Solution Concepts

For an informal introduction to the concepts of Games and Solutions, we refer to [33]:

"A game is a description of strategic interaction that includes the constraints on the actions that the players can take
and the players’ interests, but does not specify the actions that the players do take. A solution is a systematic description
of the outcomes that may emerge in a family of games. Game theory suggests reasonable solutions for classes of games and
examines their properties."

Many possibilities are available for representing games and strategies. In the following, we focus on Normal-
form and Extensive-form games and thier corresponding strategies, since they are the most relevant to our analysis.

Intuitively, a normal-form game is a matrix-shaped model, characterized by a concurrent choice of actions for
all the players, with payoffs defined by the joint tuple of chosen actions.

Definition 1 (Normal-form game). A normal-form game is a tuple <N, A, U> where:

• N = {1, 2, 3, ..., n} is a finite set of players;

• A = ×i∈N Ai is a set of actions profiles where Ai is the set of action for player i;

• U = (U1, ..., Un) is the set of utility functions Ui : A → R.

Definition 2 (Normal-form strategy). A normal-form strategy si for i ∈ N is defined as a function si : Ai → ∆|Ai |,
where ∆n = {p ∈ R

n | ∑j pj = 1 and ∀j pj ∈ [0, 1]} is a probability distribution over n elements.

Intuitively, an imperfect information game in extensive form models a tree-shaped game characterized by a
sequential play of actions of each player leading to a terminal node providing a utility. Due to partial information,
players may not have full knowledge of the exact past sequence of actions, and in such a case two or more nodes
may be identical from a player point of view, thus ending in the same information set. Similarly, a behavioral
strategy for a player is a mapping that associates each of his information set with a distribution over the possible
actions, thus fully characterizing the behavior of a player in a game.

Definition 3 (Imperfect-Information Extensive-form Games [36]). An imperfect-information game in extensive form
is a tuple Γ = (N, A, V, L, ι, ρ, χ, U, H)where :

• N = {1, 2, 3, ..., n} is a finite set of players;

• A is a set of actions;

• V is a set of nonterminal nodes (also called choice nodes);
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• L is a set of terminal nodes, disjoint from V;

• ρ : V → 2A is the action function, which assigns to each choice node a set of possible playable actions;

• ι : V → N is the player function, which assigns to each non terminal node a player i ∈ N who chooses an action at
that node;

• χ : V × A → V ∪ L is the successor function, which maps a choice node and an action to a new choice node or
terminal node;

• U = (U1, ..., Un) where Ui : L → R is a real-valued utility function for player i on terminal nodes L;

• H = (H1, ..., Hn) is the set of information sets, in which each Hi is a partition of Vi = {v ∈ V|ι(v) = i} such that
for any x1, x2 ∈ Vi, ρ(x1) = ρ(x2) whenever there exists a h ∈ Hi where x1 ∈ h and x2 ∈ h.

Definition 4 (Behavioral strategy). A behavioral strategy πi for player i is a function πi(vi) : Vi → ∆|ρ(vi)|, where
∆n = {p ∈ R

n | ∑j pj = 1 and ∀j pj ∈ [0, 1]} is a probability distribution over n elements.

It is to be noted that a classical result is the equivalence of representational power between extensive-form
and normal-form games [27], given the perfect recall condition on extensive-form games, that implies no player
can forget information acquired in earlier stages of the game at each information set. However, the normal-form
representation may require an amount of space exponentially larger than the extensive-form to be stored in
memory.

A solution concept is instead a characterization of the desired notion of equilibrium across strategies of the
game. Depending on the context of the game, a solution concept may be preferred over another to characterize
the properties of the desired best strategy. We’ll informally present two such notions: Nash Equilibria and Correlated
Equilibria.

• A Nash Equilibrium [32] is a tuple of normal form strategies, one for each player, such that no player has a
positive gain in expected value by deviating to a different strategy, against the same fixed strategies for the
opponents.

• A Correlated Equilibrium [2] is a probability distribution over joint actions of the players, such that each time
a player is suggested to play an action, he/she cannot have any positive gain by deviating to another action,
given the marginal probabilities of other players’ actions

The intuition behind these two solution concepts is that Nash Equilibria describe a stable tuple of independent
strategies for the players, in the sense that there is no incentive in deviating away, and each player’s strategy is
defined separately. Correlated equilibria describe a stable joint probability distribution over players’ actions,
where, similarly to NE, no player has incentives to deviate, but where the overall player choices are coordinated
by sampling from a common distribution, thus correlating the plays of all the players.

Another needed definition is that of Zero-sum games. A game is said Zero-Sum if ∑i∈N Ui(x) = 0 ∀x ∈
Dom(Ui); otherwise, the game is said to be a General-sum game.

1.1.2 Online Learning Algorithms for Games

In the following, we present two of the most important algorithms used to iteratively learn a Nash Equilibrium
in a game. They are the starting point upon which new algorithms, able to tackle a growing set of games with
increasing efficiency, have been developed.
Fictitious Play

Fictitious Play (FP) is a classical game-theoretic algorithm that allows to learn a Nash Equilibrium in many
types of games by repeatedly playing the game and adjusting the strategies of all players according to an update
procedure. It was first introduced by Brown [5] in 1951 for normal form games.
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The algorithm for normal-form 2 players games consists in each player counting the times the opponent chose
each action. At time t, each player plays the best action hypothesizing that the opponent will play his average
strategy observed until that moment.

If FP is applied by both the agents (i.e. self-play setting), convergence to a NE of the average strategy played is
guaranteed in two-players zero-sum games.
Regret Matching

The Online Optimization framework allows one to model learning algorithms in the context of repeated
games. In this context, the same game is repeatedly played by all players with a potentially different strategy at
each timestep, and each player can observe the payoff of the played action and the payoff he/she would have
received for each action they could have played. This allows the definition of a regret of not having played action
a in hindsight. Regret-based algorithms leverage information about past regrets to output a strategy for each
timestep.

Definition 5 (Cumulative External Regret). Given lt, a past history of achieved payoff at each time t, and li
t, the payoff

that was received if action i was played at time t, then the Cumulative External Regret of action i at time T is defined as
Ri

T = ∑
T
t=0 li

t − lt.

Definition 6 (Regret Matching). Given the cumulative external regret at time T − 1, the Regret Matching Learning
scheme prescribes to play strategy sT , defined as:

sT(i) =











Ri,+
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∑j R
j,+
T
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j,+
T > 0

1
|A|

otherwise
where Ri,+

T = max(0, Ri
T)

Intuitively, Regret matching combined with external regret prescribes to play each action proportionally to
the positive regret of not having played it always in the past.

Similarly to FP, if RM is applied by both the agents in a normal-form two-players zero-sum game, convergence
to a NE of the average strategy played is guaranteed.

1.2. Research topic

In this section, we explain the main motivations and trends of our field of study, focusing on the opportunities
presented by the current research status. A more detailed presentation of the topics introduced in this subsection
can be found in Section 2.

During the recent fifteen years, the field of Algorithmic Game Theory game theory has undergone a huge
transformation: from being able to solve only small instances of simple zero-sum two-players game, to large
complex games such as Poker in case of Libratus[9] Pluribus[11]. These algorithms can then be used outside their
original benchmarks to solve complex real games in the field of security, health, economics.

In particular, the introduction of more and more scalable solving techniques, directly working on the extensive-
form representation and making use of sampling, substituted the traditional techniques based on Linear Program-
ming. The refinement of these techniques, combined with newly developed abstraction techniques to reduce the
size of games and with refinement techniques of the produced strategies, allowed the creation of Libratus and
then Pluribus.

Another line of research has been that of using Function Approximation and Deep Learning techniques to
produce automatic abstractions without prior knowledge and faster, more generalizing techniques to solve even
bigger games. These approaches are strongly linked with the development of Multiagent Reinforcement Learning
(MARL), at the intersection of Algorithmic Game Theory and Reinforcement Learning.

In parallel, game theory community shifted part of its interest to other types of games, modeling more
complex situations, with three or more players and general-sum payoffs. In these new environments, Nash
Equilibria proved fragile in terms of robustness and with poor real-world rational behavior modeling. Thus
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important research efforts have been made to identify new possible solution concepts and to provide efficient
algorithms able to find those solution concepts in reasonable time.

Our research work will be located in the latter research line. Our goal is that of providing a faster and thus
more scalable algorithm for one of these equilibrium concepts, by leveraging Function Approximation techniques
as happened in the zero-sum field.

2. Main related works

2.1. Classification of the main related works

The relevant literature can be divided according to three categories:

• Literature regarding the characterization of possible Solution Concepts;

• Literature on the equilibrium-finding algorithms;

• Literature regarding the definition of Benchmarks to test these algorithms.

Solution Concepts Algorithms Benchmarks

General Games Team Games

Iterative
algorithms for
2-player Zero

sum

Approximated
2-player Zero

sum

Iterative
algorithms for

coordinated
solution
concepts

[3] [19] [26]
[29] [37]

[2] [17] [20] [30]
[31] [35] [41]

[42]
[4] [14]

[7] [8] [10] [22]
[24] [25] [28]
[34] [39] [40]

[43] [44]

[6] [22] [23] [38]
[13] [14] [15]
[16] [18] [19]

[21]

2.2. Brief description of the main related works

2.2.1 Solution Concepts

The presence of more than two players and/or a possibly general-sum setting brings several difficulties. Standard
algorithms employed in two-players zero-sum games are not guaranteed to converge to a Nash Equilibrium, and
Nash Equilibria are unable to model the behaviors of real rational players. Therefore some research lines explored
how to define appropriate solution concepts:

• Multi player, General sum setting: in this setting, Correlated Equilibria [2] proved to be the leading solution
concept, which has been then adapted and refined to match specific instances. Some important variants are
Coarse-Correlated Equilibria (CCE) [31], Extensive-Form (Coarse-)Correlated Equilibrium (EF(C)CE) [20] [17] [41],
Agent-Form [35] (Coarse-)Correlated Equilibrium (AF(C)CE) [41]. All these solution concepts are Correlated
Equilibria in the sense that they suppose a mediating signal sampling from a distribution, however they
differ in the type and timing of reccomendations offered to the players. This versatility of the concept of
CE brings a powerful representational power, at the cost of fragmented theory and different algorithms to
find them.
Recently [30] developed a framework called Hindsight Rationality, able to propose a single unifying view
over the relations across these concepts and the Regret Minimizations algorithms employed. The framework
is based on the concepts of hindsight evaluation of different kind of regrets associated to the gain of different
types of deviations during past plays.

5



Politecnico di Milano • Honours Programme • March 2021 • CSE Track

• Team games: in this setting, a coalitional structure is present such that players in the same team have the
exact same payoffs, while the game is zero-sum. The simplest case considers a two player team facing a
single adversary. These type of games have been introduced by Von Stengel and Koller[42], characterizing
the Team Maxmin Equilibrium (TME) for a normal form game. Basilico et al. in [4], provided an analysis
of the solution concept finding from a computational complexity point of view, also proposing algorithms
for efficiently finding them in normal form games. Celli and Gatti in [14] introduce the concept of TME on
a single-team-single-adversary extensive-form game, considering also the possibility of different forms of
communication. TMEcom allow the players to communicate before and during the game, whereas a TMEcor
allows only pre-play coordination across team members.

2.2.2 Algorithms

Great research emphasis has been posed on solving two-players zero-sum extensive games with perfect recall:

• Tabular Iterative algorithms for equilibrium computation: The Linear Program proposed by Von Stengel
in [40] was the first algorithm able to solve these type of games in a polynomial time with respect to
the size of the original game tree. This linear program finds a Nash Equilibrium in an efficient tabular
representation of the game called sequence form. The main iterative approximating algorithm used nowadays
is called Counterfactual Regret Minimization and was proposed by Zinkevich et al. in [44]. Its main point
is to map a Regret Matching instance on each information set, and demonstrate that the regret of the overall
behavioral strategy played is upper bounded by the sum of the regrets on each information set. Since each
RM minimizes the regret on each information set, then CFR converges to a Nash Equilibrium. A great
number of variations to improve the efficiency of CFR have been next developed:

– Abstraction based variants: abstractions are smaller versions of the original game, with the purpose
of capturing the most essential information while allowing a great speedup in the equilibrium finding
algorithm. Found strategies will then be mapped onto the original game where a refinement technique
might be applied. Important works in this research line are:

* CFR-BR[24] a CFR variant introduced to avoid abstraction pathologies[43];

* a fast method for computation of best response in poker games[25]. This allowed a fast evaluation
of goodness of a strategy even in a big game like poker;

* regret-based pruning techniques[7], accelerating CFR iteration by not considering parts of the game
tree at each iteration without loss of guarantees;

* realtime search techniques[8] for refining strategies in a game during realtime play with guarantees
on imrpoving the overall performance.

– Sampling variants: CFR is an iterative algorithm based on full game tree traversals on the game
tree. This may result extremely slow on big games, impacting the scalability of the overall algorithm.
A crucial impovement has been made by Lanctot et al. in [28], which introduces Monte Carlo CFR
(MCCFR), a version of CFR that allows sampling of actions, thus traversing only one subtree for each
information set. Schmid et al. in [34] introduce Variance Reduced MCCFR, a refined MCCFR that uses
baselines to estimate value at non explored nodes, thus reducing the variance due to sampling;

– Discounting Variants: in [39], Tammelin found that high inertia due to accumulation of negative
cumulative regret impacted negatively CFR’s performances. Therefore CFR+ was introduced, avoiding
large negative regrets by clipping cumulative regrets at zero. This approach has then been generalized
in Discounted CFR[10], introducing a discounting weighting scheme over past iterations.

Another more recent direction has been opened by Heinrich et al. in [22], through the introduction of
Extensive-form Fictitious Play (XFP) an extensive-form algorithm equivalent to the original normal-form
formulation of FP, yet more efficient.
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• Deep Learning approximation for equilibrium computation: traditional variants of CFR/FP are severely
constrained by the memory requirements due to the variables maintained at each information set. A pos-
sible solution consists in employing Machine Learning techniques to train regressors able to approximate
the needed values at each information set, given samples of past experience. The main strength of these
approaches is that no prior knowledge is needed for abstraction generation, at the cost of needing an initial
exploration phase. In the following we list the main results:

– Fictitious Play approximations: in [22], Heinrich et al. extended the XFP algorithm, to allow Rein-
forcement Learning and Supervised Learning to be employed for average strategy and best response
computation. This new FP variant is called Fictitious Self Play (FSP). A further extension considers
Neural Networks as regressors, defining the variant called Neural Fictitious Self Play (NFSP)[23]

– CFR approximations: CFR too has been extended with the use of function approximators. Brown et
al. in [6] defined Deep CFR, a MCCFR variant which employs Neural Networks to estimate cumulative
regrets at each information set. The approach has then been extended in DREAM[38], to allow the
more aggressive sampling scheme of VR-MCCFR to be used with Neural approximations.

• Iterative Algorithms for coordinated solution concepts: in parallel to the development of solution concepts
for the team and general sum setting, research addressed the design of no-regret learning schemes to
approximate the equilibria defined by those.

For the team games, the focus has been on the computation of a TMEcor, since they can provide arbitrarely
larger payoffs to the team with respect to a TME without coordination. Celli and Gatti[14] proposed an Hy-
brid Column Generation algorithm, and Farina and Celli et al.[18] proposed the faster Team Fictitious Self Play,
an adaptation of FP. Both the algorithms employ mixed integer programming techniques to solve the prob-
lem of determining a best response of the Team against the adversary, and LP programs to find a maxmin
equilibrium. Another option is represented by the Soft Team Actor Critic(STAC)[13] and Signal Mediated
Strategies (SIMS) [12], adapting Multi-agent Deep Reinforcement Learning techniques to the setting.

For what concerns the general sum games, algorithms have been developed for each solution concept.
Farina et al. in [19], provided a gradient-based algorithm to approximate an EFCE. Celli et al. in [15]
and [16] provided suitable CFR formulation named CFR-Jr and ICFR, to converge to EFCCE and EFCE
respectively. Both the works rely upon the use of internal regret minimizers, guaranteed to converge to a CE
in normal-form games[21], and combined them with a CFR-like per-information-set decompostion.

2.2.3 Benchmarks

In the following, we revise the main environments used to comparatively test the various algorithms we pre-
sented.

Traditionally, Poker has represented the main benchmark for two player zero-sum games with imperfect
information, thanks to its large dimensions, clear rule and payoff definition, large active professional community.
In particular very simple version such as Kuhn Poker[26] and Leduc Poker[37] have been used as small scale testing
scenes, whereas larger instances are River Poker, Heads-up Limit Texas hold’em, similar to full poker instances, with
the only restriction of being one versus one, and with limited betting rounds. Full game instances correspond to
Heads-up No Limit Texas hold’em, and No Limit Texas hold’em in the 6 player version.

In addition to these, other games have been proposed as benchamrk of multiplayer bargaining and coordi-
nation capabilities. Those games are often derived by known board games and the most notable examples are
Bridge, Diplomacy, Goofspiel, Hanabi[3], Sheriff [19].

Another class of games is the Patrolling Games played on a Gridworld[1]. The idea is that to model real-world
problems characterized by a spatial dimension in a discretized world.

To provide a shared,high-performance benchmarking setting, environments exposing many different games
with the same interface have been proposed, the most notable of them being OpenSpiel [29] by Deepmind.
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2.3. Discussion

To conclude our analysis of the state of the art, we present a summary of what have been the traditional topics
of research and what are the open issues that need to be analyzed in the future.

Since the beginning of the studies in algorithmic game theory, researchers have been focusing mainly on
finding Nash Equilibria two-players zero-sum games, and in the last years, such research process was able to
reach outstanding results (e.g. Libratus and Pluribus).

On the other hand, the interest for games with general sum payoffs or with more players has grown only
in the last years, leaving many open issues to be tackled. The most important issues regard the scalability and
efficiency of exisiting algorithms, that constrain the size of games that can be treated. Another issue regards the
robustness of such algorithms to arbitrary structures of games.

In particular, we foresee the opportunity of applying approximation techniques while preserving theoretical
guarantee of convergence, as happened for zero-sum games in the last years.
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