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Abstract

In this work, we focus on a team of agents playing a se-
quential game against a single adversary. The presence
of asymmetric information among the members of the
team makes the problem of computing a solution hard
even with zero-sum payoffs. A number of ad hoc al-
gorithms available in the literature tackle this problem
resorting to Linear Programming. Our novel approach
consists in using a procedure to convert the game to a
classical two-player zero-sum game. In this converted
game, the team is transformed into a single coordina-
tor player which only knows information common to
the whole team and prescribes to the players an action
for any possible private state. We named this procedure
Public Team Conversion, and its result is an extensive-
form game maintaining most of the structure of the orig-
inal game. Our conversion allows to adopt the highly
scalable and performant techniques already developed
for two-players zero sum games, including techniques
for generating automated abstractions. Because of the
NP-hard nature of the problem, the Public Team Con-
version produces a game which may be exponentially
larger than the original one. We then provide three prun-
ing techniques to reduce the exponential increase of size
to its square root. Finally, we present experimental re-
sults obtained by applying our technique to standard
benchmarks in the field, Kuhn Poker and Leduc Poker.
We also apply state of the art equilibrium computation
algorithms on the resulting game, showing the effective-
ness of our approach.

Introduction

Research efforts on imperfect information games tradition-
ally focused on two player zero sum (2p0s) scenarios, in
which two agents act on the same environment, receiving
opposite payoffs. In this setting, superhuman performances
have been achieved even in large instances of games, such as
Poker Hold’em by (Moravcik et al. 2017), (Brown and Sand-
holm 2017), (Brown and Sandholm 2019b), and Starcraft 11
by (Vinyals et al. 2019).

On the other hand, the design of techniques to produce
robust agents also when multiple agents act in the same en-
vironment, possibly sharing their rewards, is still an open
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challenge.

In this work, we focus on adversarial team games in which
a team of two agents cooperates against a common adver-
sary. Specifically, we focus on the ex ante coordination sce-
nario: in this setting the team members agree on a com-
mon strategy beforehand and commit to it during the game,
without communicating any further. Examples of such a sce-
nario are collusion in poker games, the defenders in the card-
playing stage of Bridge, and a team of drones acting against
a single adversary. In these scenarios, a team of agents shares
the same payoffs and coordinates against a single adversary
having an opposite payoff, in face of private information
separately given to each team member.

A natural way to characterize the desired behavior by each
agent is the team-maxmin equilibrium (TME) solution con-
cept, defined by Von Stengel in (Von Stengel and Koller
1997). In (Celli and Gatti 2018), this concept is extended to
extensive-form games considering different means of com-
munication. The team-maxmin equilibrium with correlation
(TMECor) characterizes optimal rational behavior in the ex
ante coordination scenario we consider in this paper. While
the existance and uniqueness of value of a TMECor is guar-
anteed, the computation of an equilibrium corresponding to
this solution concept is proven to be an inapproximable, NP-
hard problem (Celli and Gatti 2018). Therefore, the main
open challenge is to efficiently find a strategy profile corre-
sponding to a TMECor in a generic adversarial team game.

Related works. Classical algorithms already developed
for 2p0s games cannot be applied directly to team games
since the private information held by each team member
cannot be shared with the other team members; therefore
the problem of finding a TMECor in an adversarial team
game has been traditionally resolved through the use of ad
hoc techniques. Two main directions have been followed by
previous approaches: mathematical programming and rein-
forcement learning techniques.

Mathematical programming approaches are generally
based on a column generation approach. They constrain the
team to play a probability distribution over a finite set of
correlated plans, and iteratively add new correlated plans
giving the maximum increase in value for the team until
no new plans can be added. The constraint to draw plans
from a finite set for the team allows a polynomial-time for-
mulation of the TMECor problem, while the plan to add is



determined by using an oracle working in an implicit for-
mulation of the normal form representation of the original
game, in which the private information of a team player can
be ignored during the selection of a plan. Hybrid Column
Generation (HCG) (Celli and Gatti 2018) itereatively solves
two linear programs to determine the TMECor stategy pro-
file of the team and the adversary considering the limited
set of plans available, while uses a integer linear program
to find the best response joint plan to add to the currently
considered plans given the current strategy of the adversary.
Fictitious Team Play (FTP) (Farina et al. 2018) is instead a
fictitious play (Brown 1951) procedure running on a mod-
ified representation of the original game; in this represen-
tation one of the two team members selects a pure strategy
at the start of the game, and the other team member plays
against the adversary in the original game considering his
teammate fixed as specified by their chosen plan. Faster Col-
umn Generation (FCG) (Farina et al. 2021) is a column gen-
eration algorithm similar to HCG working in a more effi-
cient semi-randomized correlated plans representation, pre-
scribing a pure strategy for one team member and a mixed
strategy for the other. This representation also allows a cost-
minimizing formulation of the best response problem as a
dual of the program to find a TMECor considering the re-
stricted set of plans. Overall, those procedure are general and
simple to implement, but the use of linear programs strongly
limits the scalability of these exact formulations.

Reinforcement learning approaches avoid considering
plans over the entire game, and instead explicitly model
the correlating coordination signal in the original extensive
form adversarial team game. Soft Team Actor-Critic (STAC)
(Celli et al. 2019) fixes a number of possible uniform sig-
nals at the start of the game and uses a modified actor-critic
procedure to converge to a strategy for each player for each
signal. Signal Mediated Strategies (SIMS) (Cacciamani et
al. 2021) works in a perfect recall refinement of the original
game, populates a buffer of trajectories sampled from the
optimal strategy for the joint team against the adversary in
this refined game, and learns a distributed strategy for each
team member in the original game from the trajectories in
this buffer. Overall, reinforcement learning techniques are
more scalable than the mathematical programming ones, but
present convergence issues.

Original contributions. We propose an algorithmic pro-
cedure, called PUBLICTEAMCONVERSION, to convert a
generic instance of a team game into a 2p0s game, and pro-
vide three pruning techniques to reduce the size of the con-
verted game. We formally prove that a Nash Equilibrium in
the converted game corresponds to a TMECor in the original
game. In addition, we present VEFG, an alternative descrip-
tion of extensive-form games better suited for the character-
ization of public information.

The core idea of our approach is to combine the sharing
of all team members’ strategies with the use of public in-
formation to determine a belief over the possible private in-
formation of all team members. As the game progresses, the
information state of each player is enriched by the notion
that other team members may or may not be in a specific
private state given the deterministic strategy shared at the

start of the game and the observed public actions played. In
fact, playing a specific action when the overall strategy is
known, communicates part of the private information. Fol-
lowing this intuition, we propose an explicit representation
for the game by joining the team members into a single coor-
dinator who has an information state based only on the pub-
lic information shared among team members and that pre-
scribes a deterministic action for each possible private state
of the player.

Our work builds upon Nayyar et al. in (Nayyar, Mahajan,
and Teneketzis 2013); similarly to our work, a shared coor-
dinator, living in the public information state of the team,
prescribes an action to the team members for any possible
private state allowing the training of a common strategy for
the team. This coordinator-based transformation has been
employed in recent works in the fully cooperative setting of
Hanabi (Foerster et al. 2019; Sokota et al. 2021). However,
the original transformation proposed focuses on the context
of decentralized stochastic control in a fully cooperative sce-
nario, whereas we generalize such coordinator transforma-
tion in an adversarial team game setting.

Preliminaries

In this section, we provide a formal introduction to the nota-
tion used in the paper, mainly derived from the one presented
in (Kovaiik et al. 2020), and define the crucial concepts of
Nash Equilibrium and TMECor.

An extensive form game with imperfect information
(EFG) G is a tree model representing a sequential finite
interaction among different players, obtaining a payoff at
the end of each trajectory of play. The set of players is
N = {1,...,N}, and we use c to indicate the chance
player. The chance player represents Nature in the game,
and plays a fixed strategy o.. Given a player p, we use —p
to indicate all the players different from p, chance included.
The action set is indicated as A = UpE  Ap, and each node
h of the tree is identified by the tuple of actions played to
reach this point of the game, called history. Similarly, the
set of histories is denoted by H = |, Hp- Given two
histories h, g we indicate with h = g if h is a parent history
of g Z = {h e H : #g,h C g} is the set of terminal his-
tories, also called leaf histories, and u,(z) : £ — R is the
utility of player p upon reaching terminal history z. A/(h)
and A(h) indicate respectively the player playing and the
actions available to play in node h. ha indicates the history
reached by playing action a in h. To indicate the information
state of a player p, we define Z,, as a partition over H,, in-
dicating the nodes which are indistinguishable for a player.
I € 1, is called information set and we have the constraint
thatVh,h' € I : A(h) = A(h'). We use A(I) to indicate the
actions available in a information state and Z(h) to indicate
the information set of a history.

In this setting, we have different options to represent a
strategy of each player. A behavioral strategy o,(I) : I, —
AMADI s a function associating to each information set of
player p a probability distribution over the possible actions.
A normal form plan (also called plan or pure strategy) m, €
I = Xyeg, A(I) for player p is a tuple specifying an



action for each information set of p. A normal form strategy
My € Al"»l is a probability distribution over plans.

An EFG has perfect recall if for every p € N, for every
I € Z; and any pair h, h’ € I, the sequences of infosets and
actions of player p leading to h, h’ are the same.

For a EFG, a deterministic timing is a labelling of the
nodes in H with non-negative real numbers such that the
label of any node is at least one higher than the label of
its parent. A deterministic timing is exact if any two nodes
in the same information set have the same label. A EFG is
timeable if it admits a deterministic exact timing. A EFG is
1-timeable if it admits a deterministic exact timing such that
each node’s label is exactly one higher than its parent’s label.

A strategy profile is a tuple associating a strategy with
each player. The expected value for a player can be de-
fined as up, (o) = up(0p, 0_p) = X,z p7(2)up(2), where
p? (2) indicates the probability of reaching terminal node z
given the strategies of all players. Any two strategies of a
player are called payoff equivalent if, for any strategy of
the other players, both strategies have the same expected
payoff. Given a player p and a strategy for all the other
players o_,,, a best response strategy BR(o_p) for pis a
strategy maximizing their expected payoff. A Nash Equi-
librium (NE) is a strategy profile o such that no player
can gain a larger payoff value by deviating to a different
strategy. Formally, Vp € N : 0, € BR(o_p) A Team
Maxmin equilibrium with correlation (TMECor) is a TME
equilibrium in which all team players are correlated. For-
mally, a TMECor is a strategy profile o* such that: o* =
ArgMax x| xyer oyl Milg, ur(oTr,00)

VEFG Representation

Characterizing the public information for a set of players is
not possible with the standard EFG notation, since the infor-
mation structure is solely defined by its information set par-
titions, and it is difficult to determine common patterns in
the partitions of multiple players. In this section, we there-
fore introduce a refined formalization derived from EFGs
called extensive form games with visibility (VEFG). A VEFG
is identical to an EFG, apart from the introduction of an ex-
plicit visibility function Pub,(a), describing whether an ac-
tion is detected by player p or not. The information state of
a player in a history is determined by considering the ac-
tions of that history that are visible to him. This allows to
make the information known to a player more explicit than
in traditional EFGs.

The visibility function is formally defined as Pub,(a) :
A — {seen, unseen}.

A VEFG has perfect recall if any action played by a player
is seen by the player himself.

The visibility function can also be extended to sets of
players. Pub(a) : A — {pub, priv, hidden}, such that:

Puba(a) = pub < Vpe A: Pub(a) = seen

Puby(a) = hidden <= Vpe A: Puby(a) = unseen

Puba(a) = priv otherwise

From the visibility function it is then possible to derive the
classical information set structures and the notion of public
tree.

The information set structure Z = (Z,) peps can be recov-
ered from Pub,,, by considering in the same infoset the his-
tories corresponding to the same sequence of seen actions
from a player. Formally, Vh,h' € H : h,h/ € I < I, if
and only if N(h’) = N(h/) = p and (a)GEh:Pubp(a)=seen =
(a/)a’eh’:PubP(a’):seen

S is the public tree associated to the game. S € S
is called public state. Two histories belong to the same
public state if they share the same public actions (con-
sidering every player) and differ only by the private ac-
tions. Formally, h,h’ belong to the same public state iff
(a)aeh:PubN(a)=pub = (a/)a’Eh':PubN(a’)=pub- We also use
S(h) to indicate the public state associated to a history.
Moreover, we can also define the public tree for a subset
of players. Given a subset of players X < N, then Sx is the
public tree associated to players in X.

We conjecture that the set of VEFGs with perfect recall is
equivalent to the set of EFGs with perfect recall. Note that
in vEFG we have no notion of forgetting actions, thus im-
perfect recall situations in which an observation is forgotten
by a player cannot be represented.

In order to guarantee a specific structure of the vVEFGs we
treat, we introduce the concept of public turn-taking, char-
acterizing games in which the sequence of players acting
is common knowledge across all players. Intuitively, each
player knows when other players played an action in the
past, even if the game has imperfect information and the
specific action played may be hidden. This is a refinement
to the concept of 1-timeability, in which not only the length
of the history is identical but also the sequence of players.

Definition 1 (Public turn-taking property). A vEFG is public
turn-taking if:

VIeZ Vh,h eI:(P(g))geh = (P(g))gcnw

Lemma 1 (Transformation into public turn-taking game).
Any VEFG can be made public turn-taking by adding player
nodes with a single noop action. This modification will not
increazse the size of the game by a factor larger than (JN| +

Information Structure in Team Games

The core problem of finding a TMECor in adversarial team
games resides in asymmetric visibility, since team members
have a private state that does not allow to create a joint co-
ordination player.

In the following we characterize the possible types of
asymmetric visibility that may cause imperfect recall for the
joint player, and singularly address them.

¢ Non-visibility over a team member’s action. If a team
member plays a action which is hidden from another team
member, the joint team player would have imperfect re-
call due to forgetting his own played actions. This source
of imperfect recallness can be avoided in a TMECor by
considering the shared deterministic strategies before the
game starts. This allows to know a priori which are the ex-
act actions played by team members in each node. Thus it
is safe to apply a perfect recall refinement in the original



game, which corresponds to always consider the chosen
action of a team member as seen by other team members.

* Non-visible game structure. Consider two nodes in the
same information set for a player before which the other
team member may have played a variable number of
times, due to a chance outcome non visible to the team
member of this nodes. In this case a perfect recall refine-
ment is not applicable to distinguish the nodes, because it
would give the joint coordinator a visibility not correspon-
dent to the one of the players in the game. To solve this
edge case, we require the property of public turn-taking.

* Private information disclosed by chance/adversary to
specific team members. It is the most complex type of
non visibility, since in a TMECor we have no explicit
communication channels through which share informa-
tion, and therefore this type of joint imperfect recall can
only be addressed by considering a strategically equiva-
lent representation of the game in which at most one of
the team players has private information.

State of the art techniques address this issue by consid-
ering a richer representation of the original game, to make
more explicit the information needed for an effective team
coordination.

Linear programming (LP) approaches use a implicit nor-
mal form representation for one or both the team members.
This because a normal form plan allows one to specify the
complete strategy of a player in one shot, and by sharing this
information with the other team member (or equivalently, by
correlating each player’s plan selection), they can optimize
their strategy knowing how the other member will behave for
the rest of the game. This solves the coordination problem,
at the cost of large action space for the normalized players,
which however is never explicitly represented thanks to the
column generation procedure.

Reinforcement learning (RL) approaches work on a re-
fined representation of the original game, without any nor-
malization. This avoids the exponential growth of the size
of the game representation. However, such game represen-
tation lacks enough information to fully characterize the co-
ordination among team members. In the case of STAC, the
fragmented and fixed system of signals severely affects the
convergence performances, while SIMS guarantees conver-
gence only on instances without private observations, which
is not the case of most practical team coordination problems.

The main theoretical advance of the present work is the
use of a transformation based on public information of the
team to solve this problem of private information.

Our PUBLICTEAMCONVERSION transformation builds
upon the one proposed by (Nayyar, Mahajan, and Teneket-
zis 2013). The main idea is to substitute team players in the
original game with a coordinator that only sees public infor-
mation among team members. The coordinator prescribes
the action of the currently playing team member by emitting
a prescription directed to them, associating each possible
private state of the player with one possible action. In this
way, each player becomes a puppet agent which executes
the prescriptions received by using the private information
at his disposal. The important feature is that such a coor-

dinator only lives in the space of public information of the
team, and therefore the decision points giving prescriptions
to each team player can be associated to a unique player.

Intuitively, we can see this process of prescription as an
explicit weak normalization. In fact, we maintain the pub-
lic tree structure of the original game, while we normalize
each public state, in the sense that we build smaller local
plans with an action for each private state corresponding to
a public state. As in the normal form conversion, we still
have an exponential explosion due to the combination of ac-
tions for each private state, but the decomposition per pub-
lic state makes it more computationally tractable, especially
when employing pruning techniques.

Public Team Conversion Algorithm

We now present the proposed algorithmic procedure to con-
vert an adversarial team game into a 2p0s game, in which a
coordinator player takes the strategic decision on behalf of
the team.

The algorithm recursively traverses the original game tree
in a post-order depth-first fashion. For each traversed node,
corresponding nodes are instantiated in the converted game.
The conversion procedure works by copying unaltered all
the chance, terminal, and adversary nodes, by considering
that the visibility of the new coordinator player ¢ is the public
visibility among team members.

Team member nodes are instead mapped to a new coor-
dinator node, in which the coordinator plays a prescription
I among the combination of possible actions for each in-
formation state I belonging to the public team state of the
node to convert. The effect of playing a prescription in the
converted game corresponds to having played the action pre-
scribed for the current state in the original game. A prescrip-
tion is only visible to the team members. To have the players
see the action played in the original game, we add a dummy
chance node playing that action with the same visibility rules
it would have in the original game.

We call such a conversion procedure PUBLICTEAMCON-
VERSION, and the related pseudocode is shown in Algo-
rithm 1.

In Appendix A we give the definitions of two mapping
function among pure strategies of the original and converted
game. We define:

e p : I+ — II, is the function mapping each team joint
pure strategy in the original game into a corresponding
pure strategy of the coordinator in the converted game.

e ¢ : II; — IIy is the function mapping each pure strat-
egy of the coordinator in the converted game into a corre-
sponding team joint pure strategy in the original game.

It is therefore possible to state the main result of this paper.

Theorem 2. Given a public-turn-taking vEFG G, and the
correspondent converted game G' = CONVERTGAME(G),
a Nash Equilibrium (s, po) in G’ corresponds to a TMECor
(1T o) in G where pg = o ().

We show an example of game and results of its conver-
sion in Appendix B, Figure 2 and Figure 3 To simplify the
representation, we avoid a full adversarial team game, and
instead focus on a cooperative game.



Algorithm 1 Public Team Conversion

1: function CONVERTGAME(G)

2: initialize G’ new game

3: N« {t,o0}

4: hiy <— PUBTEAMCONV(hg,G,G’) = new game
root

5: return G’

6: function PUBTEAMCONV(h, G, G)
7: initialize b’ € H'
8

if h € Z then = terminal node

9: W—heZ
10 uy(h') < up(h) YVpeN
11: else if P(h) € {o,c} then = opponent or chance
12: P'(h) « P(h)
13: A'(h') — A(h)
14: if h is chance node then
15: al(h') = o.(h)
16: fora’ € A'(h') do
17: Pub}(a’) < check Pubr(a’) = pub
18: Pub)(a") < Pub,(a’)
19: ha' < PUBTEAMCONV(ha', G, G")
20: else = team member
21: P(W)=t
22: A'(R) — Xiesyny AU) > prescriptions
23: forIV e A'(h') do
24: Pub}(T") < seen, Pub/,(I") < unseen
25: a — T'[Z(h)] = extract chosen action
26: initialize h” € H’
27: A'(h") « {a'}
28: PR =c¢
29: Pubj(a’) < seen
30: Pub)(a") = Pub,(a’)
31: ol (h") = play o’ with probability 1
32: h"a' < PUBTEAMCONV(ha', G, G')
33: WT <« n”
34: return b’

For notational clarity, we use < to indicate the assignment
of a value to a function or node in the converted game. This
assignment will update the data structures in G' accordingly

Pruning techniques

The general procedure presented in the previous section al-
lows us to prove the theoretical soundness of our approach in
the general setting. However, this formalization is not suited
for practical applications, because the prescriptions of the
coordinator produce a large fanout of the game tree, since in
a public state in which A actions are available for S possible
private states we have A° prescriptions.

While the computation of a TMECor has a unavoidable
exponential complexity due to the NP-hardness of the prob-
lem, any 2p0s solving algorithm can strongly benefit of any
improvement made to the game size.

In this section we describe three pruning techniques to at-
tenuate the computational challenges of the converted game.

Pruned Representation. Whenever a prescription is

given to a team member that has to play a public action,
the played action can be used to exclude the private states
for which a different action has been given. This exclusion
allows to safely consider only a subset of the possible pri-
vate state for the public state. In a game in which many ac-
tions are played by the same team player, the progressive
reduction of possible private states can effectively lower the
exponential fanout. This pruning effect is particularly effec-
tive when the chosen prescriptions are various, suggesting
many different actions; on the other hand, non informative
prescriptions associating the same action to all private states
do not allow the exclusion of any private state.

Folding Representation. In the original game, chance
outcomes are explicitly represented independently by the
visibility of the outcomes, branching the game tree in differ-
ent subgames according to the specific outcome. Consider
the case of the extraction of a specific outcome when this
is a private information for a team member and unseen by
the adversary. In the converted game, such a outcome is not
visible to any player, and can therefore be safely postponed
as long as no specific action depends on it. The folding rep-
resentation takes advantage of this property to avoid sam-
pling these types of private state, and instead sampling an
action from the prescription depending on the probability
(also called belief) that in a certain point in the game a spe-
cific private state is present given the previous actions of all
players. The dummy chance nodes h” instantiated in Algo-
rithm 1 therefore may present different actions each with a
probability that is the sum of the probability of the private
states for which that action has been prescribed. This rep-
resentation also takes advantage of the computed beliefs to
reduce the prescriptions given by the coordinator as in the
pruning representation.

Overall, the game size is reduced in case many private
states for the players are sampled. Such a representation is
similar to the public belief state representation proposed in
(Brown et al. 2020). The name folding representation de-
rives from the fact that trajectories with same public actions
but different private states are folded one over the other in
the converted game.

Safe Imperfect Recallness. Whenever a team player is in
a state with three or more actions available, a specific action
is played and some possible private states are excluded from
the belief. The specific actions prescribed for the excluded
states are not important to describe the information state of
the player; we can therefore forget part of the prescription
and have imperfect recall among different prescriptions with
different prescribed actions for excluded states. For exam-
ple, given 2 player states {0,1} and 3 actions {4, B, C},
consider prescriptions AB and AC. In the case in which we
observe action A after them, there is no difference between
having chosen one of the prescriptions over the other; indeed
the result is that action A has been played and the player
knows to have private state 0.

While this pruning technique does not directly reduce the
number of nodes, it reduces the number of information sets,
simplifying the information structure of the game. This re-
duces the space requirements to represent the strategies, and
makes the algorithms converge faster. This pruning tech-



nique is theoretically sound, and the convergence properties
of CFR in this imperfect recall setting have already been ad-
dressed by (Lanctot et al. 2012). For a graphical representa-
tion of the effects of the pruning and folding techniques, we
can check their effects on Figures 4 and 5 of Appendix B.

Experiments

In this section, we evaluate the benefits of the pruning tech-
niques when applied to a toy game, and present the applica-
tion of our conversion procedure to multiplayer instances of
Kuhn and Leduc poker.

Impact of Pruning techniques

To evaluate the impact of pruning techniques, we designed a
simple parametric game for which we are able to determine
in closed-form the total number of nodes.

Suppose a two player game G in which there are C' chance
outcomes at root, observed by P1 and not by P2, followed by
H levels of actions of P1, each with A actions each and one
last level of P2. P2 has no visibility of any of the previous
actions, thus all his nodes are in the same information set.

We evaluate the size of four different representations, for
varying parameters A, C, H:

* Normal form plans: as a baseline comparison, we com-
pute the number of normal form plans for P1 in the game;

* Basic representation: we compute the total number of
nodes of the coordinator player generated by Algorithm 1
from P1 nodes. We do not consider the dummy chance
nodes since those nodes can easily be avoided in a practi-
cal implementation by automatically applying their action
every time a prescription is played;

* Pruning representation: we compute the total number of
nodes of the coordinator player from P1 nodes, consider-
ing a lower fanout due to progressive pruning of private
state. Similarly as for the basic representation, we do not
consider dummy chance nodes;

* Folding representation we compute the total number of
nodes of the coordinator player from P1 nodes, consider-
ing one node for each public state as in the folding rep-
resentation. In this case, chance nodes cannot be avoided
as multiple outcomes may be available. We therefore con-
sider an extra node for each coordinator’s prescription.

The evaluation is performed for a varying number of levels
H. Similar considerations have also been done for a variant
of the game in which we have two turn of chance plays at
the root of the game, in which one out of C' outcomes respec-
tively for P1 and P2 are sampled. This variation in the private
information structure corresponds to the one present in Kuhn
poker. The derivation of the total number of nodes for each
representation is presented in Appendix C. Table 1 presents
the total results in case of C' = 3 and A = 2. We observe
that pruning technique is particularly effective at dampening
the exponential factor due to the combinatorial structure of
prescriptions, thanks to the belief-based pruning.

Moreover, folding technique combines the benefits of the
pruning technique, with the specific tradeoff imposed by the
use of delayed chances. indeed, all the histories belonging

to the same public state are represented in a single node,
at the cost of a chance node added after each prescription.
This tradeoff is useful for game states in which many private
states are possible. On the other hand, when the possible pri-
vate states are reduced to one or two, the extra chance nodes
added are increasing the size of the game tree more than
in the pruning representation. We decide to use the folding
representation as our focus in on poker instances with an in-
formation structure similar to Table 1b.

Application to team poker

To test the convergence to a TMECor of our approach in a
real case, we apply our conversion procedure to the multi-
player versions of Kuhn poker and Leduc poker. The Kuhn
instances we use are parametric in the number of ranks avail-
able, and on whether the adversary plays first, second or
third in the game. Similarly, Leduc instances are paramet-
ric on the number of ranks, on the position of the adversary,
but also on the number of raises that can be made.

We directly implemented the converted games in Open
Spiel (Lanctot et al. 2019), and then took advantage of the
already available 2p0Os solvers. More details regarding the
experimental setting are available in Appendix D, while Ap-
pendix E shows the sizes of the converted games for a vary-
ing number of ranks and raises.

Figure la and Figure 1b show the convergence perfor-
mances on the converted games of Linear CFR+ (Brown and
Sandholm 2019a). We report a paired plot showing both the
value and exploitability convergence, along with the opti-
mal value of a TMECor as computed by (Farina et al. 2021),
represented as horizontal dashed lines in the team value plot.
The results are coherent with the theoretical result of Theo-
rem 2; the Nash Equilibrium returned by the algorithm has
the same value of the TMECor of the original game.

Conclusions

This paper presented a conversion procedure to transform
an adversarial team game in a two player zero sum game,
such that a Nash Equilibrium in the converted game corre-
sponds to a TMECor in the original game. This conversion
procedure is based on the use of public information among
team members, which allows to remove each player’s pri-
vate information in the converted representation at the cost
of a exponential increase in the game size. This is unavoid-
able due to the NP-hardness of the problem of computing
a TMECor in a generic team game, but some pruning tech-
niques are proposed to obtain a resulting which is more com-
putationally tractable. We proved our approach both theoret-
ically and empirically on Kuhn and Leduc poker.

This conversion retains the public structure of the original
game, and will allow the application of more scalable tech-
niques for the resolution of adversarial team games, such
as abstractions and continual resolving. Future works lever-
aging our techniques in the converted game have therefore
the opportunity to overcome current state of the art tech-
niques on larger game instances. Another direction is the
development of a conversion procedure to produce a pruned
or folded representation in online fashion, avoiding the con-
struction of the entire tree.



H normal basic pruning folding H normal basic pruning folding
1 8.00E+00 3.00E+00 3.00E+00 9.00E+00 1 8.00E+00 9.00E+00 9.00E+00 9.00E+00
2  6.40E+01 2.70E+01 2.70E+01 7.50E+01 2 6.40E+01 8.10E+01 8.10E+01 7.50E+01
3 5.12E+02 2.19E+02 1.35E+02 3.75E+02 3 5.12E+02 6.57E+02 4.05E+02 3.75E+02
4 4.10E+03 1.76E+03 5.19E+02 1.46E+03 4 4.10E+03 5.26E+03 1.56E+03 1.46E+03
5 3.28E+04 140E+04 1.72E+03 4.86E+03 5 3.28E+04 4.21E+04 5.16E+03 4.86E+03
6 2.62E+05 1.12E+05 5.18E+03 1.48E+04 6 2.62E+05 3.37E+05 1.55E+04 1.48E+04
7 2.10E+06 8.99E+05 1.46E+04 4.18E+04 7 2.10E+06 2.70E+06 4.37E+04 4.18E+04
8 1.68E+07 7.19E+06 3.92E+04 1.13E+05 8 1.68E+07 2.16E+07 1.17E+05 1.13E+05
9 1.34E+08 5.75E+07 1.01E+05 2.93E+05 9 1.34E+08 1.73E+08 3.04E+05 2.93E+05

10 1.07E+09 4.60E+08 2.55E+05 7.40E+05 10 1.07E+09 1.38E+09 7.65E+05 7.40E+05

11  8.59E+09 3.68E+09 6.27E+05 1.82E+06 11  8.59E+09 1.10E+10 1.88E+06 1.82E+06

12 6.87E+10 2.95E+10 1.51E+06 4.41E+06 12 6.87E+10 8.84E+10 4.53E+06 4.41E+06

13 550E+11 2.36E+11 3.59E+06 1.05E+07 13 5.50E+11 7.07E+11 1.08E+07 1.05E+07

14 4.40E+12 1.88E+12 8.40E+06 2.46E+07 14 4.40E+12 5.65E+12 2.52E+07 2.46E+07

(a) case in which only P1 has private information

(b) case in which both P1 and P2 have private information

Table 1: Comparison of total number of nodes for C' = 3, A = 2.
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(a) 3-player Kuhn poker, with 4 card ranks and adversary playing
first.
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(b) 3-player Leduc poker, with 3 card ranks, 1 raise, and adversary
playing first.

Figure 1: Performances of Linear CFR+ applied to Poker game instances.
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A Proofs

Lemma 1 (Transformation into public turn-taking game). Any vEFG can be made public turn-taking by adding player nodes
with a single noop action. This modification will not increase the size of the game by a factor larger than (JN'| + 1)|H|?.

Sketch of Proof. A very simple procedure that allows to prove the lemma is the following: we can set for each level of the
converted game a player, by cycling through all players (chance included). Then we can add all the histories of the original
game one by one, while imposing that at each level only the chosen player can play. If the history has no action assigned to the
level’s player, then we can add a dummy player node, with only a noop operation, and try to prosecute with the actions of the
original history in the next node. The visibility of the noop actions is unseen for all players apart from the one playing.

This procedure guarantees to get a strategically equivalent game by adding at most O((JN| + 1)|H|) for any of the |H)|
histories in the original game. This proves that the number of histories in the converted game is O((|N| + 1)|H|?)

Lemma 3. Given a public-turn-taking vEFG G, and the correspondent converted game G' = CONVERTGAME(G), each
joint pure strategy w1 in G can be mapped to a strategy w; in G', such that the traversed histories have been mapped by
PUBLICTEAMCONVERSION. Formally:

(PUBTEAMCONVERSION(h) h reached by playing (71,70 ,7c) in G
Vo dm Vi, me =
(h/)h/ reached by playing (7,7 ,7¢) in G’

Proof. We can prove Lemma 3 recursively by traversing both G and G’ while constructing the equivalent pure strategy in the
converted game. We start by hy and hl,. We know that hl = PUBLICTEAMCONVERSION(hg).

Let h and A’ be the nodes currently reached recursively in G and G’, such that A’ = PUBLICTEAMCONVERSION(h), with
the guarantee that correspondent histories in the trajectories traversed up to this point in the two games have such a property.
We thus have the guarantee that / and A’ are both terminal or both share the same player. Then:

* Case team member node
Let a = mr[Z(h)] be the action specified by 77 to be taken at Z(h). We can construct a prescription I' = (77 [1]) res|n]
equivalent to the pure strategy 77 in this public state. We set m;[Z’(h')] = T, and prosecute our proof from the two
reached nodes h'T'a and ha. The construction procedure PUBLICTEAMCONVERSION guarantees In fact that A'T'a =
PUBTEAMCONVERSION(ha).

* Case chance or opponent node
7, and 7. are common to both the traversals. This guarantees that the action a suggested by the policy is equal, and by con-
struction of the conversion procedure h’a’ = PUBTEAMCONVERSION(ha). We can thus proceed with the proof considering
b a and ha.

* Case terminal node
By construction, they have the same value for all players. This concludes the recursive proof.

O

Lemma 4. Given a public-turn-taking vEFG G, and the correspondent converted game G' = CONVERTGAME(G), each
coordinator pure strategy T; in G' can be mapped to a strategy 1 in G, such that the traversed histories have been mapped by
PUBLICTEAMCONVERSION. Formally:

(PUBTEAMCONVERSION(h) h reached by playing (71 ,7o,7c) in G
Y7y dnr V7, me - =

!
(h )h/ reached by playing (7 ,m,7¢) in G’

Proof. We can prove Lemma 4 recursively by traversing both G’ and G while constructing the equivalent pure strategy in the
original game. We start by hl, and hy. We know that hy; = PUBLICTEAMCONVERSION(hg).

Let 2’ and h be the nodes currently reached recursively in G’ and G, such that A’ = PUBLICTEAMCONVERSION(h), and
with the guarantee that correspondent histories in the trajectories traversed in the two games have such a property. We thus have
the guarantee that i and b’ are both terminal or both share the same player. Then:

* Case team member node
Let I = m[Z(h')]] be the prescription specified by 7; to be taken at Z'(h’). We can extract the prescribed action a = I'[]]
to be played in history h. We set 77[Z(h)] = a, and prosecute our proof from the two reached nodes A'T'a and ha. The
PUBLICTEAMCONVERSION procedure guarantees In fact that 4'T'a = PUBTEAMCONVERSION(ha).



¢ Case chance or opponent node
7, and 7. are common to both the traversals. This guarantees that the action a suggested by the policy is equal, and by con-
struction of the conversion procedure h’a’ = PUBTEAMCONVERSION(ha). We can thus proceed with the proof considering
h'a and ha.

* Case terminal node
By construction, they have the same value for all players. This concludes the recursive proof.

Definition 2 (Mapping functions among original and converted game). We define:

e p: Il — 11, is the function mapping each 7 to the m, specified by the procedure described in the proof of Lemma 3.
e o0 : Iy — Ily is the function mapping each m, to the 7 specified by the procedure described in the proof of Lemma 4.

Those two functions can also be extended to mixed strategies, by converting each pure plan and summing the probability
masses of the converted plans. Formally:

Vur e AT p(ur)ml = Y pr(rr)
Trip(nT)="7¢
Vi e AT ()] = S plm)

o (me)=mT

Corollary 4.1 (Payoff equivalence). A public-turn-taking vEFG G and G’ = CONVERTGAME(G) are payoff-equivalent. For-
mally:

V7 Yoo, Te : up (T, Mo, Te) = e (p(T7), oy Te)
Vg Vg, me UT(U(T"t)aTro:ﬂ'c) = Ut(ﬂ'tvﬂ'o»ﬂ'c)

We can now prove the main result of the present work.

Theorem 2. Given a public-turn-taking vEFG G, and the correspondent converted game G' = CONVERTGAME(G), a Nash
Equilibrium (g, (o) in G’ corresponds to a TMECor (u, tio) in G where i = o(uy).

Proof. By hypothesis we have that:

pf e argmax min N () o(To)te(me e (i, mor )
€A Ho€ATo  F=8
€l

To€ll,
me€ll,.

We need to prove:

U(M;k) € argmax min Z NT(WT)/JJO(T‘—O)/JC(WC)UT(WTv Tos 7Tc)
preAllT HoeAllo

Let ming s goor () and miny g (p ) be the inner minimization problem in the TMECor and NE definition respectively.
Absurd. Suppose 3 [i7 with a greater value than o (u} ). Formally:

T
pivin (A7) > min  (u7)

In such a case, we could define iy = p(fi7) having value:

- . T) > : N\ (%

R = iR, ) = e, (7)) = i)
where the equalities are due to the payoff equivalence. However this is absurd since by hypothesis uf is a maximum. Therefore
necessarily:

o(uf) € arg max min(pr)
! /,J,TGAHT NE



B Converted game representation
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Figure 2: Example of a cooperative game. Player 2 can see all actions apart from chance outcomes 0, 1. Nodes of a player with
same number are in the same infoset.
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Figure 3: Example of Figure 2 converted. Nodes of a player with same number are in the same infoset. For notational clarity,
dummy chance nodes are not represented, prescriptions list the action to take for private state 0 and 1, the action taken afterward
is in bold in the prescription.
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Figure 4: Example of Figure 2 converted using belief pruning. Nodes of a player with same number are in the same infoset. For
notational clarity, dummy chance nodes are not represented, prescriptions list the action to take for private state 0 and 1, the
action taken afterward is in bold in the prescription.
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Figure 5: Example of Figure 2 converted using folded representation. For notational clarity, prescriptions list the action to take
for private state 0 and 1. Terminal nodes in the form x|y represent a terminal node which has a weighted average value with
respect to the outcomes x and y.

C Pruning evaluation

We proceed to analyze the size in total number of coordinator nodes of the converted game for player P1 nodes, depending on
the pruning technique used. To formalize the total number of nodes, we use a succession notation, where s;(c) indicates the
number of nodes at level [ in which P1 may be in exactly c private states. Such a notation is particularly useful to represent the
relation between private states, pruning, and total number of nodes.

Normal form representation. As a baseline comparison, we compute the number of normal form plans in the game. The
total number of plans for P1 can be computed as A“*H .

Basic Representation. Each of the H level has A actions, and we have C' independent trees due to the initial chance. Since
we do not perform any belief pruning, all nodes have C' possible private states.
The correspondent succession is:

xo(c) = { OC gg i g initial C chance outcomes
x(c) = { gl 1(c) - AC iiz i g A€ fanout at each level

Therefore:

Il
M=
Ma
i)
=

tot(C, A, H)

Il
<)
o
Il
—

I
Q
M=
N
)

-
Il
—

Pruning Representation. Given a node with a generic number I of private states, we can work by induction to retrieve the
number of generated nodes:

* children left with I possible infostates: A. They correspond to the nodes reached through a prescription assigning the same
action for all [ states;

» children left with I — 1 possible infostates: A-(A—1)*- (I —1). They correspond to the nodes reached through a prescription
assigning any of the A actions to the state corresponding to the card drawn in this subtree (defined by the chance outcomes)
and to other I — 2 states, and assigning any of the remaining A — 1 actions to the remaining state;

e children left with I — 2 possible infostates: A - (A4 —1)2- (I ;1) They correspond to the nodes reached through a prescription
assigning any of the A actions to the state corresponding to the card drawn in this subtree (defined by the chance outcomes)
and to other I — 3 states, and assigning any of the remaining A — 1 actions to the 2 remaining states;

» children left with 1 possible infostates: A - (A —1)¢~*. (gj) They correspond to the nodes reached through a prescription
assigning any of the A actions to the state corresponding to the card drawn in this subtree (defined by the chance outcomes),

and assigning any of the remaining A — 1 actions to the / — 1 remaining states.



We can generalize this pattern. Children left with ¢ possible private states out of available I:

n(i,I)=A-(A-1)7". <‘; 1) forie[1,1]
As a check:
c

i=1

n(i, 1) = ZilA- (A— 1)l G‘D _
(5 Y-

—A[A-1) 41t = Al

which corresponds to the expected A’ prescriptions available in the current node.

Then repartition of each level’s nodes will depend on the number of nodes having a certain number of private state in the
previous state, according to the repartition indicated by n(4, I'). In particular, each of the b;_;(c) nodes will generate n(i, c)
children with ¢ private states.

The correspondent succession is:

yo(C) = { OC ilf:g i g initial C chance outcomes

c
c) = Z bi—1(2) - n(c, i)

Note that we do not count auxiliary chance nodes, since in practical implementation they can be easily compacted with the
previous coordinator nodes.
Therefore:

H
tot(C, A, H) Z

||MQ

Folding Representation. In this representation we have no initial chance sampling, and each coordinator nodes presents a
chance node per prescriptions, each with a variable number of children depending on the number of unique actions.

To compute the total number of nodes per level, we can acknowledge that each coordinator node with ¢ private states cor-
responds to ¢ nodes (all with ¢ private states) in the pruning representation. Therefore, at each level we have a number of
coordinator node z;(c) = y;(c)/c

In this case, chance nodes have to be considered in the total nodes computed, since they cannot be easily reduced. In particular,
each coordinator node has associated a chance node per prescription action available.

Therefore:

z1(c) = yi(e)/e

H C
tot(C, A, H) = 22 - (A°+1)

Moreover, such an analysis can be extended also to the case of 2 initial level of chance nodes, extracting one out of C
private states for P1 and P2 respectively. In this case, basic and pruning representation have a different starting condition, with
20(C) = yo(C) = C2, while the folding representation has no changes.

D Experimental settings
Poker instances

We refer to the three player generalizations of Kuhn and Leduc poker proposed by (Farina et al. 2018).

As all poker games, at the start of the game each player antes one to the pot, and receives a private card. Then players play
sequentially in turn. Each player may check by adding to the pot the difference between the higher bet made by other players
and their current bet (i.e. by matching the maximum bet made by others). Each player may fold whenever a check requires to
put more money into the pot and the player instead decides to withdraw. Each player may raise whenever the maximum number
of raises allowed by the game is not reached, by adding to the pot the amount required by a check plus an extra amount called
raise amount. A betting round ends when all non-folded players except the last raising player have checked.



In Kuhn poker, there are three players and k possible ranks with k different ranks. The maximum number of raises is one,
and the raising amount is 1. At the end of the first round, the showdown happens. The player having the highest card takes all
the pot as payoff.

In Leduc poker, there are three players, k possible ranks having each 3 cards in the deck, and 1 or 2 raises. The raise amount
is 2 for the first raise and 4 for the second raise. At the end of the first round, a public card is shown, and a new round of betting
starts from the same player starting in the first round. At the end, the showdown happens. Winning players are having a private
card matching the rank of the public card. If no player forms a pair, then the winning player is the one with the card with the
highest rank. In case of multiple winners, the pot is split equally.

Implementation and execution details

We implemented the folded representation of both Kuhn and Leduc taking advantage of the OpenSpiel (Lanctot et al. 2019)
framework. The framework allowed us to specify the game as an evolving state object, and provided the standard resolution
algorithms for the computation of a Nash Equilibrium in the converted game.

The implementation is in Python3.8 and the experiments have been performed on a machine running Ubuntu 16.04 with a 2x
Intel Xeon E5-4610 v2 @ 2.3GH CPU. The implementation is single threaded.

E Converted game size

Number of ranks 3 3 3 4 4 4 5 5 5
Adversary position 0 1 2 0 1 2 0 1 2
Coordinator nodes 222 291 591 1560 2220 7412 8890 13025 66465

Adversary nodes 219 372 288 1996 5416 2656 12425 54040 16560

Terminal nodes 1320 1704 2436 16584 24536 51800 144740 235660 760520
Chance nodes 1129 1405 2461 10913 14641 40977 85521 119001 514681
Chances with one childonly | 936 1188 2184 5680 7944 25400 29840 43360 218940
Total number of nodes 2890 3772 5776 31053 46813 102845 251576 421726 1358226
Coordinator information sets 86 113 155 392 556 856 1738 2543 4093
Adversary information sets 12 12 12 16 16 16 20 20 20
Time taken for a full traversal | 2.0s 2.3s 3.36s 14.7s  18.1s 37.2s 68.6s 125s 447s
Table 2: Converted Kuhn game characteristics for varying parameters.
Number of ranks 3 3 3 4 4 4
Number of raises 1 1 1 2 2 2
Adversary position 0 1 2 0 1 2
Coordinator nodes 84243 117126 232950 57138 66268 76384
Adversary nodes 60543 98034 134196 32790 38622 46758
Terminal nodes 354999 476187 775233 163580 185994 213098
Chance nodes 284200 378928 694132 160395 184065 211437
Chances with one child only | 181020 250908 494544 137044 159202 184738
Total number of nodes 783985 1070275 1836511 413903 474949 547677
Coordinator information sets 7184 7232 7316 5624 5632 5650
Adversary information sets 228 228 228 630 630 630
Time taken for a full traversal 332s 322s 686s 220s 255s 183s

Table 3: Converted Leduc game characteristics for varying parameters.



