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1. Introduction to the problem

In the field of computer graphics, non-rigid alignment of 3D shapes plays an important role in many geometry
processes. It is used, for instance, for texture transfering in digital animation and 3D objects retrieval. Other
important applications are in the medical field: it can be used as a support tool for automatic measurements
on digital scans or as first step in automated diagnosis. Non-rigid matching consists, basically, in finding
correspondences between 3D objects related by deformations. It is a particularly challenging problem since the
space of possible correspondences is huge.

A breakthrough in the field was represented by [17], which proposed to put in correspondence functions
defined on the shapes rather then points. Once the bases of the functional spaces are defined, the mapping can be
compactly represented as a change-of-basis matrix, as depicted in figure 1. This matrix is then determined by
solving an optimization problem, namely finding the mapping that best aligns some functions defined on the
shapes: descriptors (probe functions that characterize the shape), landmarks and segments. The great advantage of
this approach is that such constraints are linear and the size of the mapping is independent of the size of the shape
representation, making it efficiently solvable. This approach, which is referred to as functional maps, immediately
reached state-of-the-art results in non-rigid alignment and was further extended by many other works, among
which [16, 18, 19, 6, 13].

A key element of this framework is represented by the choice of the basis for the functional space, which needs
to be:

• compact: it should approximate well functions even with a small number of elements

• stable: its span should be invariant with respect to deformation and pose change

In [17] and almost all subsequent works, the choice has been to use the first k eigenfunctions of the Laplace-Beltrami
operator, which are the manifold equivalent of the Fourier basis [8, 22]. Since they are ordered in increasing
frequency, this representation corresponds to a low-pass filter approximation. While this has been proven to be
optimal for smooth functions [1], it is not always well suited for representation and transfer of functions with a
high-level of detail [3]. By increasing the number of elements, thus covering higher frequencies, the basis becomes
unstable under moderate deformations and it is harder to align. The problem of finding a good balance in the
trade-off between compactness and quality of the approximation is thus still open.

2. Main related works

Many works have been proposed to try to replace or extend the basis given by the first Laplace-Beltrami
eigenfunctions. Some of them tackle a specific class of functions, like [11], which defines a frame to represent
step functions on manifolds. [12] proposes a basis specifically for the task of mesh transfer between shapes, by
including information about the cartesian coordinates of the points. Involving extrinsic information, this approach
is not deformation-invariant and thus only applicable when shapes are already almost aligned in pose. [14]
proposes a localized set of functions that naturally extend the LB eigenbasis, but requires a region to be specified.
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(a) source shape (b) target shape (c) correspondence matrix

Figure 1: An example of mapping between shapes, rendered as color correspondences, and the related matrix.
Source: [17]

In [10] a learning-based approach is adopted to define a basis (together with optimized descriptors), but this
requires a set of pairs of shapes with known point-to-point correspondence.

Recently, the traditional LB eigenbasis has been extended by considering the pointwise product of its elements,
basing on the theoretical consideration that a functional map corresponds to a point-to-point map if and only if it
preserves pointwise product of functions. In [15] the map between eigenproducts is completely derived from the
alignment of eigenfunctions alone, thus being very susceptible to noise in the map. In [9] the extended base (made
by eigenfunctions and their pointwise products) is orthogonalized and a new, more stable, method for recovering
the mapping is proposed, but requiring a conversion to and from a point-to-point map. What is interesting about
these last works, though, is the amount of high-frequency information present in eigenproducts and the fact that
they could be, theoretically, aligned just by using a (very accurate) map between eigenfunctions.

3. Research plan

The goal of the research is to find a compact, yet powerful basis for the space of real-valued functions on bi-
dimensional discrete manifolds. With “powerful” we mean its ability to represent and transfer functions accurately,
even when they have a significant content in high frequencies. The general idea is to apply signal processing
techniques, in particular (sparse) representation on overcomplete dictionaries, to tackle this problem.

This kind of approach is widely and satisfactorily used in other fields, such as image processing, where
high-dimensional data need to be represented compactly. Despite this fact, it has not been much explored in
the field of 3D geometry processing, in particular not for function representation. Some works have actually
appeared, but they differ significantly from our approach. [7] presents some dictionary-based methods for 3D
modeling, but not dealing with function representation over the shapes. In [23] an overcomplete dictionary is
learned from probe functions on a set of shapes, but with the purpose of building a compact global descriptor for
object retrieval. More similar to ours is [21], where a new functional basis is learned from a collection of shapes
using descriptors defined on them. While the purpose is similar, they use neural networks to achieve it and the
dictionary is completely built from scratch.

Our approach, instead, is based on two fundamental steps:

• Creation of an overcomplete dictionary, with the aim of covering a large and rich functional space. The first
candidate are the pointwise products of Laplace-Beltrami eigenfunctions, due to their promising behaviour
in high frequency [15, 9] and their tight connection with the current standard. Another option we would like
to explore is the use of descriptors themselves, as done in [21].

• Dimensionality reduction of the overcomplete dictionary, basing on the assumption that not all the
spanned space is equally informative. First, we would like to test PCA here, due to its simplicity. Secondly,
the double sparsity framework [20], which builds a new, compact dictionary on top of a larger one. The new
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atoms are sparse linear combinations of the elements of the underlying (overcomplete) dictionary. Sparsity is
meant as a form of regularization and we will analyze its impact in the compactness trade-off.

Note that our approach is adaptive: the reduction will be performed designing a suitable pool of representative
functions, that will provide the criterion to actuate the selection.

Evaluation

The research will be focused on designing and implementing a procedure to build a basis with the characteristics
detailed above, which will be evaluated experimentally on existing shape datasets, like FAUST [4], TOSCA [5] and
SCAPE [2]. The most natural setting for testing such basis is function transfer and shape correspondence through
functional maps. To this purpose we will use two metrics:

• the geodesic error for shape matching, both in terms of average error and of percentage of point correspon-
dences as a function of the maximum geodesic error allowed

• the normalized approximation error for function transfer

Both the datasets and the metrics are standards in the field and will provide an immediate comparison with
current state-of-the-art methods.

Organization

The research is decomposed in the following tasks (organized temporally in figure 2):

• Study of the state of the art: study the literature on the functional map framework, with particular focus on
the basis aspect, and on the main techniques for sparse representation of signals.

• Familiarization: experiment with the code of existing methods to get familiarity with them, with their
technical aspects and with the tools.

• Design: define the method to obtain the new basis by properly selecting the initial dictionary, the reduction
technique and the selection function set.

• Implementation: implement the code to realize the designed method, with attention in choosing efficient
implementation of algorithms.

• Testing: test the behavior of the basis on shape datasets to assess its performance and compare to current
methods.

• Writing: write the conference paper and the M.Sc thesis.

Since the approach adopted is mainly experimental, the steps of design, implementation and testing will be
actually iterated many times to find the most promising alternative. At the end, this will be refined and extensively
tested.
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Figure 2: GANTT diagram of the research plan
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