Research Project Proposal: Compact and Adaptive Basis for Shape Correspondence via Functional Maps

Michele Colombo

Michele11.colombo@mail.polimi.it CSE track

Matching 3D shapes

Motivation

- Common step in geometry processing
- Allows for information transfer between shapes:
- Textures
- Segmentation
- Functions

Practical application: synthetic dataset creation for medical diagnosis

- Goal: automatically diagnose nasal pathologies from CFD simulations on nose scans
- Problem: too few nose scans to train a classifier
- Possible solution: build a synthetic dataset from a collection of healthy nose scans. How?
- An expert defines pathological deformations on one nose
- Deformations are transferred on scans of healthy noses
- Train

This requires non-rigid matching between 3D shapes

Non-rigid matching: a complex problem

- Point-to-point correspondences live in a huge space, dependent on the size of the shapes
- Rigid matching can be compactly represented as a matrix
- Lack of a compact representation for non-rigid matching

Functional Maps

Matching represented as a correspondence of functions

Functional Maps

- T can be recovered from T_{F}
- Not all functional maps have a correspondent point-to-point map

Functional maps are strictly more expressive than point-to-point maps

Functional Maps

- Given a basis $\left\{\phi_{i}^{\mathcal{M}}\right\}$ of real-valued functions defined on \mathcal{M} :

$$
f=\sum_{i} a_{i} \phi_{i}^{M}
$$

- T_{F} is linear
- The transformation becomes:

$$
T_{F}(f)=T_{F}\left(\sum_{i} a_{i} \phi_{i}^{M}\right)=\sum_{i} a_{i} T_{F}\left(\phi_{i}^{M}\right)
$$

Functional Maps

- Let $\left\{\phi_{j}^{\mathcal{N}}\right\}$ be a basis of real-valued functions defined on \mathcal{N}
- $T_{F}\left(\phi_{i}^{\mathcal{M}}\right)=\sum_{j} c_{j i} \phi_{j}^{\mathcal{N}}$ for some $c_{j i}$
- $T_{F}(f)=\sum_{i} a_{i} \sum_{j} c_{j i} \phi_{j}^{\mathcal{N}}=\sum_{j} \sum_{i} a_{i} c_{j i} \phi_{j}^{\mathcal{N}}$

Matrix representation

- $c_{j i}$ are independent of f, depend only on the basis
- $c_{j i}$ completely define the mapping between $\phi_{i}^{\mathcal{M}}$ and $\phi_{j}^{\mathcal{N}}$]

Given the two bases, the matrix C fully represents the functional mapping

Finding C

- Solve and optimization problem to compute C
- The objective function is given by the minimization of the error on function preservation:

$$
\min \|C \hat{f}-\hat{g}\|^{2}
$$

- Different kinds of functions can be used:
- Descriptors
- Landmarks

This leads to a linear problem in C

- Segments

Descriptors

- Probe functions that should characterize any point of the shape as precisely as possible
- Intrinsic descriptors are independent of isometric transformations
- Examples:
- HKS
- WKS
- Learn-based

Choice of the Basis

- Crucial aspect of functional maps
- Desired properties:
- Compactness: most natural functions should be well approximated with a small number of basis elements
- Stability: the space of functions spanned should be stable under small or nearisometric shape deformations

LB eigenbasis

- Eigenfunctions of the Laplace-Beltrami operator
- Manifold equivalent of Fourier basis
- Ordered in increasing frequency
- Selecting the first k elements correspond to a low pass filter approximation
- Proved to be optimal for smooth (bounded variation) functions [Aflalo et al., 2015]
- Problems:
- Instable at higher frequencies -> not suitable for detailed functions
- Not well behaved for non smooth functions (e.g. indicators)

Binary Sparse Frame

Optimized for representation and transfer of step functions

[Melzi, Computer \& Graphics, 2018]

Coordinate Manifold Harmonics

- Integrates LB eigenbasis with information about the spatial coordinates (extrinsic information)
- Designed for mesh structure transferring between shapes
- Requires similar pose

Localized Manifold Harmonics

- Integrates LB eigenfunctions with localized functions
- Still ordered in frequency, naturally extends LB eigenbasis
- Requires the definition of regions

[Melzi et al., Computer \& Graphics, 2017]

Pointwise products of LB eigenfunctions

- A functional map preserves pointwise product of functions if and only if it corresponds to a point-to-point map
- Products contain information in higher frequencies
- Their mapping is given by the alignment of LB eigenfunctions only,
 but it is sensitive to noise

Research directions

- Goal: Find a compact and adaptive basis for the representation of real functions on manifolds.
- Able to represent and transfer detailed functions
- Two step process:
- Expand: create an overcomplete dictionary
- Select: reduce its dimension

Expansion

- Goal: create a large set of generator to cover a large functional space
- Redundancy is good to leave room for a good selection after
- Freedom to use different functions defined on the shape. Some options:
- LB eigenfunctions
- Descriptors
- Binary sparse frame
- Pointwise products of these functions

Selection

- Assumption: not all the spanned space is equally interesting
- Goal: select the most informative part of it
- Adaption to specific classes of functions
- Options:
- Principal Component Analysis
- Double sparsity

Principal Component Analysis

- Select an orthogonal set of generators of a subspace
- Given a set of functions, the subspace is the one that best approximates them
- Simple to apply
- Fast computation of representation, thanks to orthonormality

Double sparsity

- Learn a dictionary over a base dictionary:

$$
D=\Phi A
$$

- D is the new dictionary
- Φ is the fixed base dictionary
- A is sparse and it is learned from a set of samples X
- Sparsity over a predefined set of atoms acts as regularization
- In our case: Φ is the expanded basis, X is a set of informative functions defined on the manifold. The goal is to learn A.

Evaluation

- Experimental evaluation on widely used shape datasets: FAUST [Bogo et al., CVPR 2014], TOSCA [Bronstein et al., Springer 2008] and SCAPE [Anguelov et al., NIPS 2005]
- Comparable to current state-of-the-art methods
- Two metrics:
- Normalized approximation error for function representation and transfer
- Geodesic error for shape matching

Planning

