PC-GAU: PCA basis of Scattered Gaussians for Shape Matching via Functional Maps

Michele Colombo michele11.colombo@mail.polimi.it CSE Track

Shape Matching: intuitive idea

Find correspondences between the points of two 3D shapes

Shape Matching: applications

•

Transfer of **information** between shapes

Texture Transfer

Segmentation transfer

Source: Ovsjanikov et al, ACM TOG 2012

• Function transfer (e.g. deformation)

Source: Melzi et al, ACM TOG 2019

Source: Melzi et al, ACM TOG 2019

Shape Matching: problem formulation

- Input: pair of meshes \mathcal{M} and \mathcal{N} , vertices $V_{\mathcal{M}}$ and $V_{\mathcal{N}}$
- Unknown correspondence $T: V_{\mathcal{N}} \rightarrow V_{\mathcal{M}}$
- **Output:** point-wise map $\overline{T}: V_{\mathcal{N}} \to V_{\mathcal{M}}$
- **Goal:** \overline{T} similar to T
- Error evaluation:

 $e(x) = \text{geoDist}_{\mathcal{M}}(\overline{T}(x), T(x))$

Shape Matching via Functional Maps [OBCS*12]

Functions defined on a mesh

- $f: V_{\mathcal{M}} \to \mathbb{R}$
- f vector $\in \mathbb{R}^n$, with $n = |V_{\mathcal{M}}|$
- $\mathcal{F}(\mathcal{M}, \mathbb{R})$ functional space of \mathcal{M}

Functional basis → Ψ $= \left\{ \begin{array}{c} \mathbf{0} \\ \mathbf{0}$

Function transfer through *C*

- \mathcal{M} with (truncated) orthonormal basis Φ
- \mathcal{N} with (truncated) orthonormal basis Ψ
- $C \in \mathbb{R}^{k \times k}$

Finding C

For each pair of corresponding functions f_i and g_i

Projection on Φ and Ψ

$$\hat{f}_i = \Phi A_{\mathcal{M}} f_i \qquad \hat{g}_i = \Psi A_{\mathcal{N}} g_i$$

Preservation -> Constraint on C

 f_i

 $\hat{g}_i = C \hat{f}_i$ Optimization problem on *C*

 $\boldsymbol{\chi}$

 g_i

Landmark: y = T(x)


```
Descriptors
```

Converting *C* into a point-wise map [OBCS*12]

Given:

- $\mathcal M$ with basis Φ
- ${\mathcal N}$ with basis Ψ
- *C* from \mathcal{M} to \mathcal{N}

Embedding

- Mesh \mathcal{M} , basis $\Phi = \{\phi_i\}$, vertex $x \in V_{\mathcal{M}}$
- Embedding of *x*:

```
\operatorname{Emb}(x) = [\phi_i(x)]
```


- *k*-dimensional representation of vertex *x*
- Emb(x) are the coefficients in Φ of a Delta function centered in x

Locality preservation

• This method works if:

 $\|\operatorname{Em} b(x) - \operatorname{Emb}(y)\|_2 \approx \operatorname{geoDist}(x,y) \,\forall x, y \in \mathcal{M}$

• In particular, ordering of ||Emb(x) - Emb(y)|| and geoDist(x,y) for all vertices y in a neighborhood of x should be preserved

We will define a metric for this property

 Φ should be **locality preserving** in $x, \forall x \in \mathcal{M}$

Standard basis: LB

Eigenfunctions of the Laplace-Beltrami operator: $\Delta \phi_i = \lambda_i \phi_i$ [VL08]

- Orthonormal \Rightarrow efficient projection
- Ordered in frequency ⇒ low-pass filter
 approximation of functions
- Optimal *k*-dimensional basis for approximating smooth functions on a mesh [ABK15]

 Φ_{LB}

Errors in point-wise maps

Limits of LB

The energy of LB is **not distributed evenly** on the mesh surface

- Low quality of representation provided by the embedding space in certain areas:
 - Discrimination power between different vertices
 - Locality preservation

We will define metrics

Energy distribution: intuition

Our proposal: PC-GAU

- Basis for $\mathcal{F}(\mathcal{M}, \mathbb{R})$
- Designed to be used as a truncated basis in functional maps pipelines for shape matching
- Its energy is **evenly distributed** on the mesh surface

PC-GAU: construction

 Principal Components of a dictionary of Gaussian functions scattered on the mesh

Scattered vertices

Dictionary of Gaussians

PC-Gau

Subset of vertices Q

- Subset of q vertices $Q \subset V_{\mathcal{M}}$
- Farthest Point Sampling (Euclidean distance)

Evenly scattered on the surface

q = 1000

Gaussian function centered in $p \in Q$

PCA computation

Even distribution of basis energy

Basis energy -> power of representation of the embedding space

• Discrimination power \longrightarrow Dis(x)

• Locality preservation \longrightarrow EGDC(x)

Discrimination power

Assign sufficiently distant embeddings to different vertices

Function on
$$\mathcal{M}$$
 $Dis(x) = \frac{\|Emb(x) - Emb(y)\|_2}{geoDist(x, y)}$

Nearest neighbor $y = \arg \min_{z \in V_{\mathcal{M}} \setminus \{x\}} \{ \|Emb(z) - Emb(x)\|_2 \}$ in embedding space

Locality preservation

Correlation to measure the order preservation between embedding and geodesic distances

 $EGDC(x) = corr (geoDist_{\mathcal{M}}(x, y), \|Emb(x) - Emb(y)\|_{2})_{y \in E}$

E set of *s* embeddings closest to Emb(x)

Discrimination power Dis(x)

Locality preservation EGDC(x)

Experimental Evaluation

- Randomly select pairs of meshes from established datasets
- Insert LB and PC-GAU in the same shape matching pipeline
- Compare the accuracy of the point-wise maps obtained

Point-wise accuracy

- Evaluate $\overline{T}: V_{\mathcal{N}} \to V_{\mathcal{M}}$ wrt $T: V_{\mathcal{N}} \to V_{\mathcal{M}}$ (given)
- Geodesic error:

$$e(x) = \text{geoDist}_{\mathcal{M}}(T(x), \overline{T}(x))$$
Average Geodesic
Error (AGE)
$$(AGE)$$

$$(Cumulative error curves)$$

$$(AGE)$$

$$(Cumulative error curves)$$

$$(Correspondences)$$

$$($$

C computed from the ground-truth correspondence

- Test setting only
- Best possible *C*,

given Φ and Ψ

Average Geodesic Error

Dataset	Ours $(\times 10^{-3})$	$LB (imes 10^{-3})$
FAUST	15,7	19,7
MWG	20,8	24,9
MWG iso	13,6	17,3
TOSCA	7,7	12,3
SHREC19	24,5	28,4

C estimated in real settings

	Average Geodesic Error				
Dataset	Ours $(\times 10^{-3})$	$LB(imes 10^{-3})$	Ours $(\times 10^{-3})$	$LB(\times10^{-3})$	
FAUST	28,0	30,6	24,0	26,1	
MWG	58,7	58,7	51,2	70,6	
MWG iso	25,9	27,6	18,6	27,2	
TOSCA	12,7	19,8	9,7	20,5	
SHREC19	56,2	78,5	34,5	39,4	
	<i>C</i> estimated with product preservation [NO17]		<i>C</i> estimated with ZoomOut [MRR*19]		

References

[ABK15] Y. AFLALO, H. BREZIS, AND R. KIMMEL. On the optimality of shape and data representation in the spectral domain. *SIAM J. Imaging Sciences*.

[MRR*19] S. MELZI, J. REN, E. RODOLÀ, A. SHARMA, P. WONKA, AND M. OVSJANIKOV. ZOOMOUT: Spectral upsampling for efficient shape correspondence. ACM Transactions on Graphics.

[NO17] D. NOGNENG AND M. OVSJANIKOV. Informative descriptor preservation via commutativity for shape matching. Computer Graphics Forum.

[OBCS*12] M. OVSJANIKOV, M. BEN-CHEN, J. SOLOMON, A. BUTSCHER, AND L. GUIBAS. Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics.

[VL08] B. VALLET AND B. LÉVY. Spectral geometry processing with manifold harmonics. Computer Graphics Forum.