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1. Introduction to the research topic

Multi-Agent Path Finding (MAPF) is a problem in the broader field of Multi-Robot Systems in which multiple
agents must plan paths to preassigned targets, avoiding collisions. Multi-Agent Pickup and Delivery (MAPD)
is an extension of MAPF in which agents have also the freedom to assign themselves to targets which, unlike
in the MAPF problem, are not a fixed set but may change at any time step. These problems are mathematically
modeled through a formal framework which has seen a growing interest in recent years, due to its great practical
relevance especially in the logistics field. However, we will argue that there is still a gap between theory and
reliable applications and we will prospect some future work in this direction.

Conferences and Journals
Multi-Agent Path Finding and Multi-Agent Pickup and Delivery belong to the research area of Multi-Robot
Systems which, in turn, lies in the intersection of broader research fields like Artificial Intelligence (AI) and
Autonomous Robotics. In selecting the most important conferences and journals in these fields, we considered
parameters like the H5-index of publications, the Impact Score1 and the average acceptance rate.
The most relevant conferences with respect to our problem are:

• Association for the Advancement of Artificial Intelligence (AAAI)

• International Joint Conference on Artificial Intelligence (IJCAI)

• International Conference on Automated Planning and Scheduling (ICAPS)

• International Conference on Robotics and Automation (ICRA)

• International Conference on Intelligent Robots and Systems (IROS)

• International Conference on Autonomous Agents and Multiagent Systems (AAMAS)

The most relevant journals with respect to our problem are:

• Artificial Intelligence Journal (AIJ)

• Journal of Artificial Intelligence Research (JAIR)

• Autonomous Robots (AURO)

• IEEE Transactions on Robotics

• International Journal of Robotics Research (IJRR)

• Robotics and Autonomous Systems (RAS)
1The number of citations received in that year of articles published in a specific journal during the two preceding years, divided by the total

number of publications in that journal during the two preceding years
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1.1. Preliminaries

To better understand the topic and the problem formulations in the next sections, some basic definitions are
needed.

Definition 1.1. An undirected graph G = (V, E) is a mathematical structure that consists of a set of vertices, or
nodes, V and a set of edges E ⊆ V2, which are non ordered pairs of vertices.

Definition 1.2. A vertex vi is said to be neighbor, or adjacent, of a vertex vj in some graph G if vi is connected to
vj through an edge.

In the following we will present the classical formulations of the MAPF and MAPD problems [20][10].

1.1.1 The MAPF problem

A MAPF problem instance consists of:

• A given finite connected undirected graph G = (V, E), whose vertices V correspond to locations and whose
edges E correspond to connections between locations that the agents can move along.

• A given set of M agents {ai|i ∈ [M]}2. Each agent ai has a start vertex si ∈ V and a goal vertex gi ∈ V (that
represents the preassigned target). All start vertices are pairwise different. All goal vertices are also pairwise
different.

At each discrete time step, each agent ai either moves to an adjacent vertex or waits at the same vertex. Let
πi(t) ∈ V denote the vertex occupied by agent ai at time step t.

Definition 1.3. A vertex collision is a tuple 〈ai, aj, v, t〉, where agents ai and aj occupy the same vertex v = πi(t) =
πj(t) at the same time step t.

Definition 1.4. An edge collision is a tuple 〈ai, aj, u, v, t〉, where agents ai and aj traverse the same edge (u, v),
where u = πi(t) = πj(t + 1) and v = πj(t) = πi(t + 1), in opposite directions between time steps t and t + 1.

Definition 1.5. A path πi = 〈πi(0), πi(1), ..., πi(Ti), πi(Ti + 1), ...〉 for agent ai satisfies the following conditions:

1. The agent starts at its start vertex, that is, πi(0) = si.

2. The agent ends at its goal vertex at the arrival time Ti, which is the minimal time step Ti such that, for all
time steps t = Ti, ..., ∞, πi(t) = gi.

3. The agent always either moves to an adjacent vertex or does not move between two consecutive time steps,
that is, for all time steps t = 0, ..., ∞, (πi(t), πi(t + 1)) ∈ E or πi(t + 1) = πi(t).

Definition 1.6. The makespan maxi∈[M]Ti of a MAPF plan is the maximum of the arrival times of all agents at their
goal vertices.

Definition 1.7. The flowtime ∑i∈[M] Ti of a MAPF plan is the sum of the arrival times of all agents at their goal
vertices.

A MAPF plan consists of a path πi for each agent ai. A MAPF solution is a MAPF plan whose paths are
collision-free. The problem of MAPF is to find a solution with the smallest makespan or flowtime.
While single agent path finding is tractable (Dijkstra [4]), MAPF is NP-hard to solve optimally for both makespan
minimization [21] and flowtime minimization [26]. The optimal makespan and optimal flowtime of any MAPF
problem instance are both bounded by O(|V|3) [27], however, as stated, it is NP-hard to find a solution with the
minimum makespan.

2We let [M] denote the positive integer set {1, ..., M}, representing the number of agents.
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1.1.2 The MAPD problem

A MAPD problem instance consists of:

• A given finite connected undirected graph G = (V, E), whose vertices V correspond to locations and whose
edges E correspond to connections between locations that the agents can move along.

• A given set of M agents {ai|i ∈ [M]}. Each agent has an initial vertex. All initial vertices are pairwise
different.

• A task set T that contains the set of unexecuted tasks in the system. The task set changes dynamically as, at
each time step, new tasks can be added to the system. Each task τj ∈ T is characterized by a pickup vertex
sj ∈ V and a delivery vertex gj ∈ V and is added to the system at an unknown (finite) time step. A task is
known and available for execution only from the time step on when it has been added to the system.

At each discrete time step, each agent ai either moves to an adjacent vertex or waits at the same vertex. Let
πi(t) ∈ V denote the vertex occupied by agent ai at time step t. When the system starts (at time step 0), agent ai
starts at its given initial vertex πi(0).

Definition 1.8. A path πi = 〈πi(0), πi(1), ..., πi(Ti), πi(Ti + 1), ...〉 for agent ai satisfies the following condition:
The agent always either moves to an adjacent vertex or does not move, that is, for all time steps t = 0, ..., ∞,
(πi(t), πi(t + 1)) ∈ E or πi(t + 1) = πi(t).

Definition 1.9. An agent is called free if and only if it is currently not executing any task. Otherwise, it is called
occupied.

A task can be assigned to one agent at a time. A free agent can be assigned any task τj ∈ T . In order to execute
task τj, it then has to move first from its current vertex to the pickup vertex sj of the task and then from there
to the delivery vertex gj of the task. When the agent reaches the pickup vertex, it starts to execute the task and
removes the task from T . When it reaches the delivery vertex, it finishes executing the task, which implies that it
becomes free again and is no longer assigned the task. Any free agent can be assigned any task in the task set.

Definition 1.10. The service time is the average number of time steps needed to finish executing each task after it
was added to the system.

Definition 1.11. The makespan is the earliest time step when all tasks are finished.

The problem of MAPD is to find collision-free paths for the agents to finish executing all tasks. Being a
generalization of MAPF, also MAPD is NP-hard to solve optimally and the effectiveness of a MAPD algorithm is
evaluated by the service time or makespan.

1.2. Research topic

Multi-Agent Path Finding is a type of multi-agent planning problem in which the objective is to plan paths for
multiple agents on a graph, where the fundamental constraint is that the agents will be able to follow these paths
concurrently without colliding with each other. MAPF has a range of relevant applications which are becoming
more and important, including automated warehouses [25], autonomous vehicles, robotics, and videogames. A
key characteristic of standard MAPF is that the set of starting and ending vertices corresponding to each task are
fixed, and each task is preassigned to an agent. These limitations can be a problem in real world applications, for
example in warehouses, where tasks are continuously added to the system and cannot be preassigned to agents in
advance; to bridge this gap, more general frameworks have been developed. In the Lifelong MAPF formulation [9],
new tasks are assigned to different Windowed MAPF (collisions need to be resolved only for the first w time-steps)
instances, and subsequent re-plans are used in order to solve the various instances; task assignment is still fixed
and considered external to the problem. The more general formulation, named Multi-Agent Pickup and Delivery,
combines long-term planning and target assignment and is the more suited to represent a dynamic application
environment.
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2. Main related works

2.1. Classification of the main related works

Literature in the field of MAPF is broad and rich of theoretical results; on the other hand, research on more
articulated (and closer to model real scenarios) problems like MAPD has just started but is growing every year as
well as the practical relevance of its applications.
The first dimension which allows us to classify the various works is this particular area of Multi-Agent Systems
is the the definition of the type of problem they intend to solve. In the literature it is possible to find slight
variations of the same problem under different names; we will consider the subdivision proposed by Ma [10], that
is characterized by sharp differences among the various classes.

• MAPF: the classical one-shot problem of Multi-Agent Path Finding.

• Anonymous MAPF: allows the freedom of assigning targets to agents, combining the problem of path
planning and target assignment.

• TAPF: Target Assignment and Path Finding, still combines the problem of path planning and target
assignment, but agents are divided in teams and an agent can only be assigned a target if that target is given
to its team (allocation of targets to teams is predetermined and fixed). It can be considered a generalization
of MAPF and Anonymous MAPF.

• MAPD: combines path planning and target assignment but, differently from previous problems, is long-term,
meaning that new tasks may enter at any time step.

Another direction followed by research is trying to close the gap between the problem formulation and real world
applications [22]; some advancements in this area will be presented in Section 2.2. This gap is a limit but also
offers great possibilities for new ideas which will ultimately lead to the development of a new generation of more
reliable, secure, and efficient Multi-Agent Systems.

2.2. Brief description of the main related works

In this section we will present some details on the various problem formulations and a brief review of algorithms
and techniques proposed to adapt those theoretical frameworks to more concrete applications.

2.2.1 Problem formulations

As previously highlighted, while for the classical MAPF problem the theoretical background is consolidated [20],
for other variants like MAPD consensus on a common theoretical basis has yet to be reached. For our research, to
overcome this issue, we decided to adopt the framework proposed by Ma [10] which, to the present day, is the
most structured and coherent. The main aspects of this framework are presented in Section 2.1; more in depth
analysis of the MAPF and MAPD problems can be found in section 1.1.1 and 1.1.2.
Another formulation of the long-term problem is given by Li et al. [9], under the name of Lifelong MAPF: here
the problem of target assignment is not considered, and this allows a decomposition into sequence of Windowed
MAPF instances, in which standard MAPF algorithms can be used.
A different aspect of long term operation is considered by Svancara et al. [23] in the definition of Online MAPF: in
this setting new agents can enter at any time step and task assignment is not necessary since every new agent is
associated with a specific start and goal.

2.2.2 Algorithms

Various algorithms exists to solve MAPF problems optimally, in the following we present two of the most notable
examples.
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• Conflict-Based Search (CBS) [17] is a two-level complete and optimal MAPF algorithm that does not convert
the problem into a single ‘joint agent’ model. At the high level, a search is performed on a Conflict Tree
(CT) which is a tree based on conflicts between individual agents. Each node in the CT represents a set of
constraints on the motion of the agents. At the low level, fast single-agent searches are performed to satisfy
the constraints imposed by the high level CT node. In many cases this two-level formulation enables CBS to
examine fewer states than a classical algorithm based on A∗ search over the joint space of agents [5] while
still maintaining optimality.

• Increasing Cost Tree Search (ICTS) [18] ICTS is another example of complete and optimal two-level search
algorithm. The high-level phase of ICTS searches the increasing cost tree for a set of costs (cost per agent).
The low-level phase of ICTS searches for a valid path for every agent that is constrained to have the same
cost as given by the high-level phase. A compact data-structure called multi-value decision diagram (MDD)
[19] is involved to store all single-agent paths of a certain length, for each agent.

Since MAPF is NP-hard to solve optimally, bounded sub-optimal algorithms were developed to allow applications
in time constrained or real-time situations. Some examples are Bounded Sub-optimal CBS (BCBS) and Enhanced
CBS (ECBS) [3], which are derived from standard CBS and exploit Focal Search, an approach based on a bounded
sub-optimal variant of A∗ called A∗∈ [15].
Regarding the MAPD problem, research has started only recently, so fewer algorithms have been proposed. Ma et
al. [12] proposed 3 online algorithms divided in two categories: decoupled (where each agent assigns itself to
tasks and computes its own collision-free paths given some global information) and centralized.

• Token Passing (TP) is a decoupled algorithm based on a token, a synchronized shared block of memory that
contains the current paths of all agents, the task set, and the task assignments that record which tasks are
currently assigned to which agent. System initializes the token with the trivial paths where all agents rest at
their initial vertices. At each time step, the system adds all new tasks, if any, to the task set. Any agent that
has reached the end of its path in the token requests the token once per time step. The system then sends
the token to each agent that requests it, one after the other. The agent with the token chooses a task from the
candidate task set such that no path of other agents in the token ends at the pickup or delivery vertex of the
task, because it can then find a path to the pickup vertex and then a path to the delivery vertex of such a
task and safely rest at the delivery vertex. Finally, the agent returns the token to the system and moves along
its path in the token (if it can’t find a feasible task it rests where it is sure not to cause deadlocks).

• Token Passing with Task Swaps (TPTS) is a decoupled algorithm similar to TP except that its task set now
contains all unexecuted tasks, rather than only unassigned tasks. This means that an agent with the token
can assign itself not only a task that is not assigned to any agent but also a task that is already assigned to
another agent as long as that agent is still moving to the pickup vertex of the task. This might be beneficial
when the former agent can move to the pickup vertex of the task in fewer time steps than the latter agent.
The latter agent is then no longer assigned the task and no longer needs to execute it. The former agent thus
sends the token to the latter agent so that the latter agent can try to assign itself a new task.

• Central is a centralized algorithm that makes decisions for multiple agents at a time. Similar to TPTS, Central
allows agents that have just become free to consider not only unassigned tasks but also all unexecuted tasks,
including the ones that have been assigned to agents, in the task set. Unlike TPTS, Central uses a centralized
target-assignment algorithm, the Hungarian method [8], to assign (or reassign) tasks to agents and allows all
free agents to consider tasks that have just been added to the system. It uses the centralized MAPF algorithm
CBS to plan paths for multiple agents.

As seen in experimental results [12], TP is the only algorithm that can be used for real-time lifelong operation, at
the cost of increased makespan and service time.
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2.2.3 Robustness

The term robustness describes the property of a MAPF or MAPD algorithm of being able to complete all the
planned tasks even in case some unexpected event, not considered in the original formulation of the problem but
possible in real applications, forces some deviation of the execution from the original plan.
In the MAPF setting, Atzmon et al. [1] defined as k-robust a plan that does not have any k-delay conflicts.
Informally, this means that no conflicts will occur even if some of the agents are delayed by up to k time steps; the
authors proposed an algorithm to solve this problem optimally based on CBS, called k-Robust CBS. Starting from
the idea of k-robustness, Atzmon et al. [2] defined as p-robust a solution that is conflict-free with probability at
least p, even though unexpected delays may occur. This notion is, arguably, a more realistic form of robustness,
since it does not assume a strict limit on the number of unpredictable delays per agent.
For MAPD algorithms key elements are environmental characteristics, namely well-formedness, that can provide
a sufficient condition to allow for long-term robustness [10]. The intuition is that agents should only be allowed to
rest (that is, stay for a long period without an intention to move away) at vertices, called endpoints, where they
cannot block other agents. According to Ma et al. [12], a MAPD problem instance is well-formed if and only if:

1. The number of tasks is finite.

2. There are no fewer non-task endpoints (designated vertices that allow the agents to rest) than the number of
agents.

3. For any two endpoints, there exists a path between them that traverses no other endpoints.

So, until now, long-term robustness in the MAPD framework has been studied only inside the original theoretical
setting of the problem; long-term robustness in real application settings, where delays, failures and adversarial
events may occur, still remains an open question.

2.2.4 Kinematic constraints

So far we have considered agents as abstract entities; in reality they are often robots and, as such, they are subject
to physical constraints like minimum turning radius, maximum velocity, maximum acceleration, etc.; to introduce
these physical limitations in the formulation of the problem, some solutions have been proposed.
Hoenig et. al. [7] presented MAPF-POST, an approach that makes use of a simple temporal network to post-process
a MAPF plan in polynomial time to create a plan-execution schedule that works on non-holonomic (not all degrees
of freedom can be controlled at the same time) robots, takes their maximum translational and rotational velocities
into account, provides a guaranteed safety distance between them, and exploits slack (defined as the difference
of the latest and earliest entry times of locations) to absorb imperfect plan executions and avoid time intensive
replanning in many cases. A similar approach was later followed by Hoenig et al. [6]: their solution exploits a
particular type of graph, called Action Dependency Graph, that captures the action precedence relationships of a
MAPF solution and can be used to enforce these relationships on real robots with higher-order dynamics. More
recently, Ma et al. [11] proposed, for the MAPD problem, an improved version of TP, called TP-SIPPwRT, keeping
into account cinematic constraints. TP is made more effective using a novel combinatorial search algorithm, called
Safe Interval Path Planning with Reservation Table (SIPPwRT) for single-agent path planning. SIPPwRT uses an
advanced data structure that allows for fast updates and lookups of the current paths of all agents in an online
setting. The resulting MAPD algorithm TP-SIPPwRT takes kinematic constraints of real robots into account directly
during planning, computes continuous agent movements with given velocities that work on non-holonomic robots
rather than discrete agent movements with uniform velocity, and is complete for well-formed MAPD instances.

2.2.5 Application environment

Since MAPF and MAPD have great potential in logistics applications, it is no surprise that the warehouse
environment is often used as benchmark for algorithms implementations [20].
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Li et al.[9], inspired by the dynamic nature of a warehouse, defined the problem of Lifelong MAPF (see Section
2.2.1) and were among the first to underline the importance of long-term execution for reliable applications in
such environment.
Salzman and Stern [16] proposed a different point of view in their analysis of the open challenges for future
research: they suggested to find ways to optimize the warehouse layout in order to get, in average, better solution
to the task assignment and planning problem.
Another logistics problem, airport surface operations, is considered by Morris et al. [14]; this problem consists of a
set of complex logistics tasks that nowadays involve coordination of humans and machines. The authors propose
a fully autonomous approach, through MAPF and kinematic constraints implemented via a simple temporal
network, which could lead to safer operations and to a more efficient use of existing surface area to meet increasing
demand.
Other interesting applications of MAPF and MAPD outside the logistics domain are service robots [24] and
videogames [13].

2.3. Discussion

In the near future, Autonomous Robotics and Artificial Intelligence are going to be an integral part of everyday
life in a lot of different sectors like transportation, logistics, search and rescue, healthcare. For this revolution to be
successful, two prerequisites are crucial: a strong theoretical foundation, needed to ensure coherent and efficient
solutions, and a solid implementation experience in order to guarantee the robustness of those solutions and their
capability to overcome the most common problems of autonomous operation.
We have analyzed these two dimensions in the sub-field of Multi-Agent Systems and we have underlined that,
while theory is relatively mature, still a lot of work has to be done towards implementations. MAPD is a promising
attempt trying to bring theory one step closer; however still nothing can be said on whether its long term
guarantees will hold in a context where execution is not perfect and the environment could be, in some cases,
adversarial.
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