
Research Project Proposal:
Interruptible Remote Attestation

Davide Li Calsi
davide.li@mail.polimi.it

CSE Track

1

mailto:davide.li@mail.polimi.it


Agenda

● Remote Attestation

● RA and Interrupts

● Performance Counters for Malware Detection

● A new approach to interruptible RA

2



Remote Attestation
What is it? How does it work?

3



Low-end MCUs and security
Security is a notoriously expensive property 
from a computational standpoint. 

What if you are dealing with a heavily 

constrained device?

Low-end Microcontrollers: scarce 

computational power, few hundreds of kB of 

RAM, lack common hardware protection.

4

ST-Nucleo L-552  board by STM32



Remote Attestation

A protocol through which a remote Verifier can attest the integrity of a 

target Prover.

Allows to start some incident response when compromised devices are 

spotted.

It has been a very active research field for decades.

5



Remote Attestation (2)

Verifier Prover

Send nonce n

Compute HMAC over 
memory and n

Verify response

6



Remote Attestation and MCUs - Real scenario

Imagine you have a low-end MCU employed in an energy production 

facility.

What if some attacker decides to compromise it?

Sadly, this scenario has become much more realistic, given the current 

international situation…

We could use an effective RA protocol here…

7



50 shades of Remote Attestation

Several classifications exist, depending on what you attest and how.

Static vs Dynamic: attestprogram memory only vs. attest data memory and runtime 

integrity

Software vs Hardware vs Hybrid: software protection only vs hardware protection 

mechanisms vs add minimal hardware + software checks

Swarm attestation: attest entire groups of devices faster than when you are attesting 

each device at a time.

8



Software-based RA
It uses software-based techniques such that tampering with the Attestation Routine 

introduces a significant computational delay.

If the Verifier measures a significant delay in the response the Prover is compromised.

It only works if the Prover and the Verifier have a single-hop connection. 

Communication delays in the network can lead to misclassification.

PROS: simple, flexible, cheap

CONS: relies on strong assumptions, vulnerable to compression and ROP attacks

9



Hardware-based RA

It uses hardware-based protection. Well-known examples are Intel SGX and 
ARM Trustzone.

It provides a strong and reliable protection, but it comes at a cost.

Hardware is not suitable for remote updates. 

PROS: strong guarantees, hard to tamper

CONS: expensive, lack of flexibility

10



Example: ARM Trustzone

11
Image by ARM



Hybrid RA

A hardware-software codesign. You aim to introduce minimal external 

hardware components, which is also supported by software checks.

It has been the most active research path lately.

PROS: contained production costs, good balance

CONS: development cost for further hardware

12



How can the Verifier check the response?

The verification phase depends on what you are attesting.

Static attestation: Verifier knows in advance which programs should run on the 

Prover. Pre-compute the expected attestation response and compare it with the 

receive one.

Dynamic attestation: requires a more sophisticated analysis on the runtime 

environment, the Control Flow Graph, ec… 

13



RA and Interrupts
Why it is a problem?

14



Firmware modification attacks

Leverage flaws in embedded software in order to modify the device’s 
firmware.

You can modify the firmware to run pretty much whatever you want.

Example: HP LaserJet Printer, exploit based on a flaw in the HP remote 

firmware update functionality. More here

15

http://ids.cs.columbia.edu/sites/default/files/ndss-2013.pdf


Interrupts in RA

Most current RA techniques require interrupts to be disabled.

Prevents malware that is already in the Flash memory from modifying memory at 

attestation time, in order to escape detection.

Self-relocating malware: malicious code that erases itself and moves to a location 

that was already attested.

Transient malware: malware that self-erases to later re-infect the system.

16



Interrupts in RA - Relocation

Benign

Benign

Malware

Begin attestation

Benign
ATTESTED

Benign

Malware

Spurious interrupt

Malware
ATTESTED

Benign

Benign

17

A

A A



The main issue

Interrupts are a key feature that should not be disabled for too long.

Time-critical applications need interrupts to be enabled at all time.

Attesting few MegaBytes of memory takes hundreds of ms on average. That is 

simply not acceptable.

18



Honorable mentions that allow interrupts

TrustLite: it uses a secure exception engine to handle interrupts

TyTan: attests one process at a time. All processes except for the one that is 

being attested can interrupt the Attestation Routine

Both schemes allow interrupts during attestation, but are vulnerable to 

roving malware.

19



Shuffled measurements

Determine a random permutation that dictates in which order these blocks must be 
attested.

Only probabilistic guarantees, with probabilities depending on the attacker’s 
knowledge (63%). 

To compensate for this, you should repeat attestation multiple times in a row.

Partial interruption: you cannot interrupt while the attestation routine is attesting a 
single block.

20



An example

Benign

Benign

Malware

Begin attestation

Benign

Benign
ATTESTED

Malware

Spurious interrupt

Malware

Benign
ATTESTED

Benign

Permutation: 2 1 3

21

A

A

A



Memory Locks

Locking a memory area = make it read only.

By appropriately locking memory at attestation time, you can allow interrupts.

Many possible implementations, depending on what you lock.

Shortcoming: part of the memory is still not writable! 

Shortcoming 2: its implementation is based on system calls, it requires an underlying 

microkernel. Not suitable for low end devices.

22



An example

Benign
UNLOCKED

Benign
UNLOCKED

Malware
UNLOCKED

Begin attestation

Benign
ATTESTED
LOCKED

Benign
UNLOCKED

Malware
UNLOCKED

Spurious interrupt

Benign
ATTESTED
LOCKED

Benign
LOCKED

Malware
UNLOCKED

Writing 
permission to 
this block 
denied!

23

A

A A



What is missing?

A technique to make RA interruptible without giving up on security.

Should work on low-end microcontrollers: negligible computational 
overhead.

Higher guarantees compared to Shuffled Measurements RA.

Flexible and general enough to be extended to several use-cases.

24



Performance Counters for 
Malware Detection
An interesting concept

25



Malware detection

Is there a better way to detect malicious interrupts?

Reasonable assumption: infected devices behave differently compared to 
uncompromised devices.

Hardware Performance Counters can measure this difference in the behavior.

We conducted a parallel literature review on malware detection using 
Performance Counters.

26



Which counters?

Performance Counters are natively present in many renown architectures.

Several CPUs are equipped with a Power Management Unit (PMU) or a 
DWT(Data Watchpoint and Trace). 

Low-level counters that count the occurrences of architectural events, such as:

● branches
● cache hits/misses
● CPI
● clock cycles spent doing something meaningful

27



DWT counters
These are the 6 vanilla counters in a Cortex-M-33 microcontroller

28

Image by ARM



MTB
MTB is an optional feature of some 
Cortex-M microcontrollers.

It writes every non-sequential update of 
the Program Counter to a Memory 
Buffer.

We could use that extra information to 
generate additional counters.

29

Image by ARM



Classify the result

Some approaches use a Database of benign counters values.

Modern approaches rely on some Machine Learning model to classify the result.

Across the years, several models were evaluated, from Decision Trees to SVM 

and Neural Networks.

30



Two phases

Offline phase: pre-deployment phase that consists in running several tests. 

Collecting enough data to train a Machine Learning model.

Online phase: feed the measured counters value to the pre-trained model, 

determine which type of activity you have measured

31



Example - Benign

int func(void* args){

int x,y,z;

/* Do stuff 
*/

}

ACTIVATE COUNTERS

READ COUNTERS

Counters:
branches: 21

cache hits: 314
cache miss: 3

load count: 24004
store count: 1200

…

32

Model



Example - Malicious

int func(void* args){

int x,y,z;

/* Do stuff 
*/

}

ACTIVATE COUNTERS

READ COUNTERS

Counters:
branches: 5231

cache hits: 14443
cache miss: 314
load count: 24

store count: 322
…

33

Model



A new approach to 
interruptible RA
Research proposal

34



Let’s not interfere with interrupts

Shuffled Measurements and Memory Locking actively stop malware from 

self-relocating or self-erasing.

Attestation is only aimed at detecting anomalies, not preventing them.

Idea: do nothing to stop malicious interrupts. Just detect them!

Use the information provided by Performance Counters to detect roving 

malware.

35



Performance counters

We will investigate this by relying on existing performance counters.

If one has previous knowledge on interrupts  you can use it to detect 

malicious activity.

Counters measure the events generated by interrupts during the 

attestation…

36



Classification of the results

… then feed these values to a suitable a DL/ML model with high 

accuracy.

We will investigate which model is more suitable for each context.

From simple models  (Logistic Regression, Decision Trees)...

…to complex ones (Neural Networks, SVM).

37



Summing-up

38

Prover

Counters:
branches: 71
cache hits: 34

cache miss: 398
load count: 204
store count: 100

…
samples taken:234

ble_read_requests:87
…

Flash 
memory

Data 
memory

Perf. Counters

Attestation 
response Verifier

Machine 
Learning 

model

Verify 
attestation 
response

Final 
outcome



Innovations in our approach

To the best of our knowledge, nobody has used Performance Counters to detect 

roving malware during RA.

Attacks only consists of relocating/transient malware, previous works focus on a 

broad range of attacks.

We plan on adding high-level counters that monitor application-level events.

Possible because low-end devices only run few simple applications.

39



Malware for embedded systems
We investigated the features of malware that can run on low-end devices.

For that purpose, we had a look at some public malware libraries.

40

Screenshot from 
MalwareBazaar



Our evaluation node

This node periodically samples 

Temperature and Humidity values, and 

broadcasts them using BLE.

We compared 100 sample-and-broadcast 

iterations with a single malware relocation.

41



Preliminary outcomes

Evaluation on a Cortex M33 processor, using the 6 “vanilla” Performance 

Counters in the DWT.

Compared self-relocating malware with an example legitimate activity.

Significant gap in the values measured by the Performance Counters. 

The most outstanding one was in the Load/Store clock cycles, as we 

expected.

42



What’s next?

● Improve our Proof of Concept implementation (more complexity, 

variable conditions).

● More use-cases and possibly other evaluation nodes.

● Collect as much data as possible to train ML models

● Generalize the concept to a theoretical methodology, extend to a 

broader range of applicative scenarios.

● Conclusions: finalize the method, validate it, investigate its limits.

43



Thanks for your attention!

44


