Research Project Proposal: 3D object reconstruction by shape priors Cristian Sbrolli cristian.sbrolli@mail.polimi.it

CSE

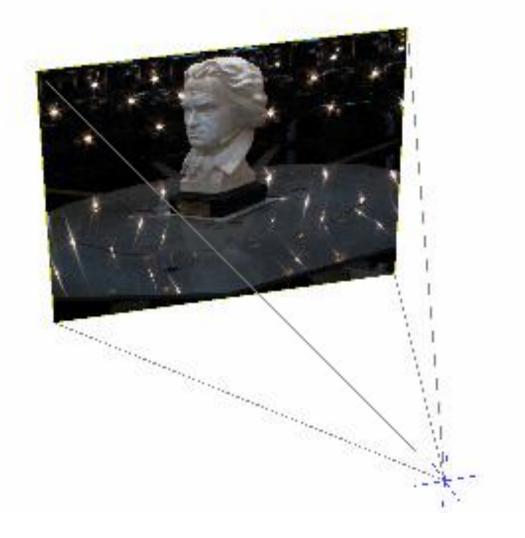
• What is 3D object reconstruction?

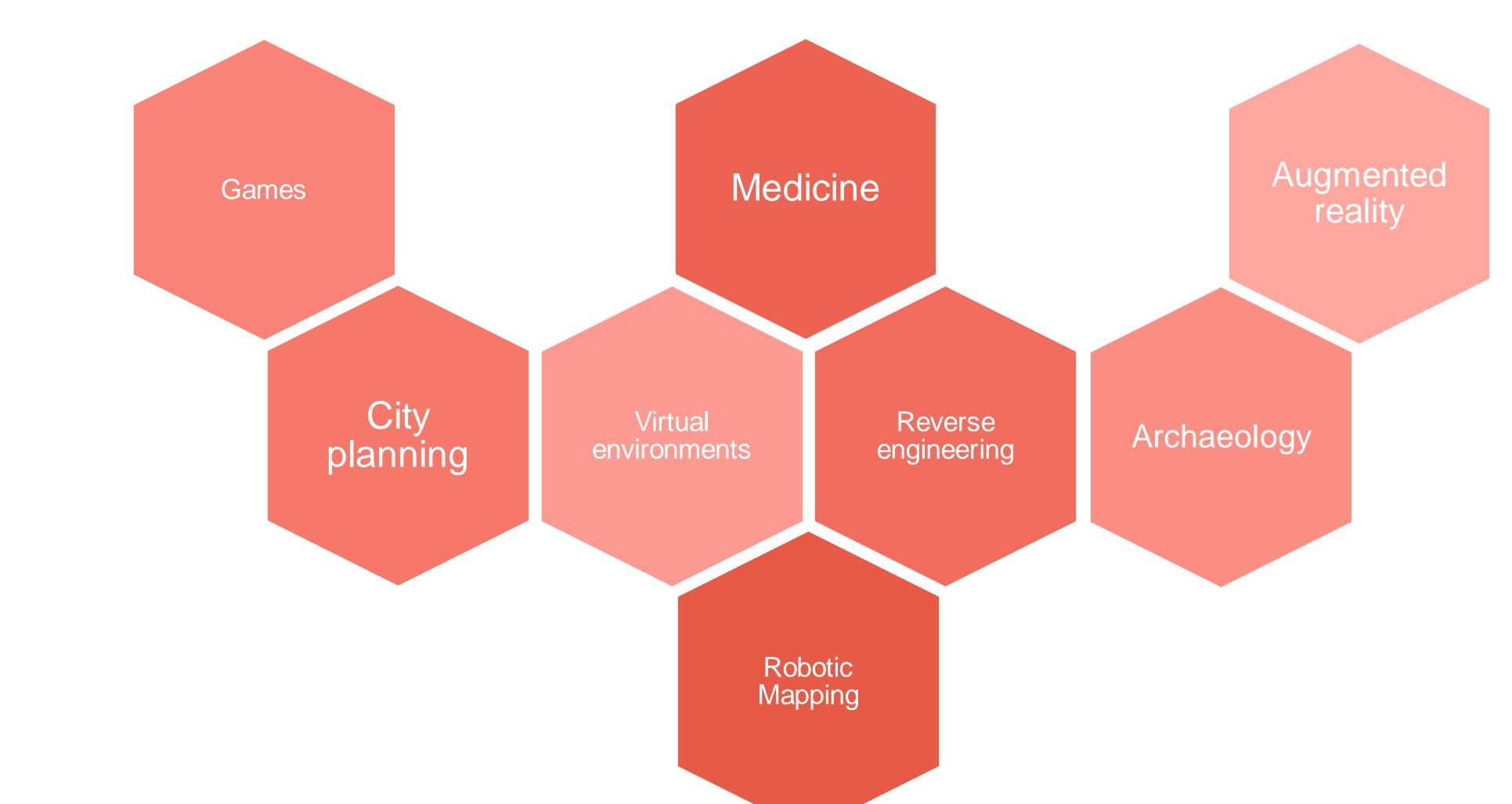
Input* Images of an object $I = \{I_k, k = 1..n\}$ $n \ge 1$

Predictor $f(\vartheta)$

OutputPredicted 3D Shape ofthe represented object \overline{S}

*Inputs can also be 3D representations as point clouds





• Why is it important?

Classical approaches

geometric perspective, model 3D to 2D process to solve the inverse problem

• How are humans good at this task, even with only one image?

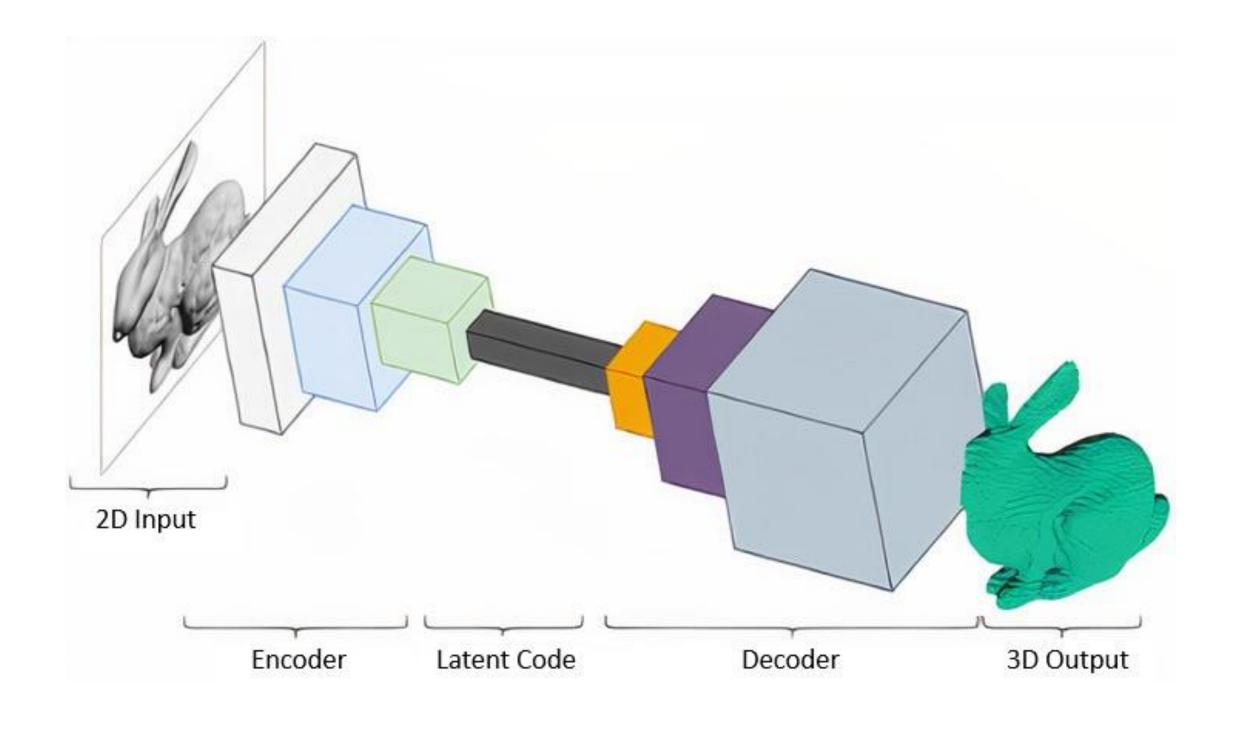
- × Calibrated cameras
- **×** Feature engineering

Exploit learnt knowledge about shapes

Deep Learning approaches

Deep Learning Approaches

Feature learning and knowledge building



 \checkmark Impressive performance even with single view

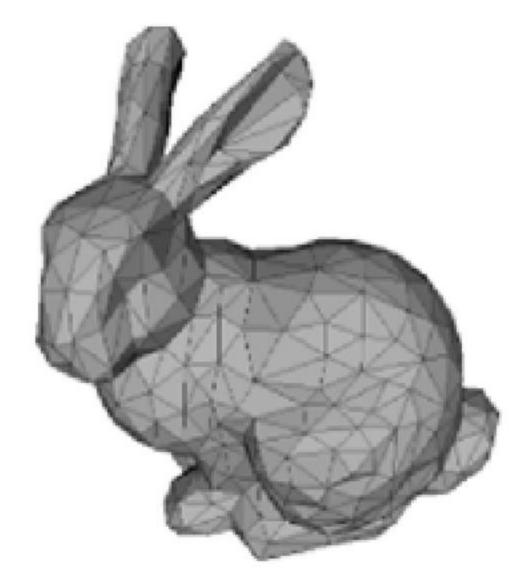
- \checkmark No need of calibrated cameras
- ✓ Feature learning
- × Require large amounts of data
- × Generalization issues to address

- What if we use only one image?
- \rightarrow 3D information loss
- → Problems aggravated by single view reconstruction:
 - × Unobserved views (Occlusion)

× Noisy backgrounds

Preliminaries

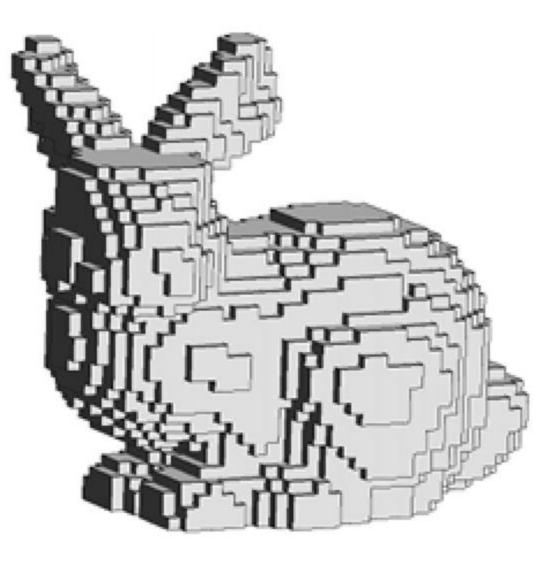
- How do we represent 3D shapes?
 - ✓ Relatively easy to collect
 - ✓ Exact representation
 - × Often not directly used
 - **×** Do not model connectivity
 - - Point cloud



✓ Easy to render and transform ✓ Computers optimized for it × Curved objects approximated × Don't hold up in all resolutions

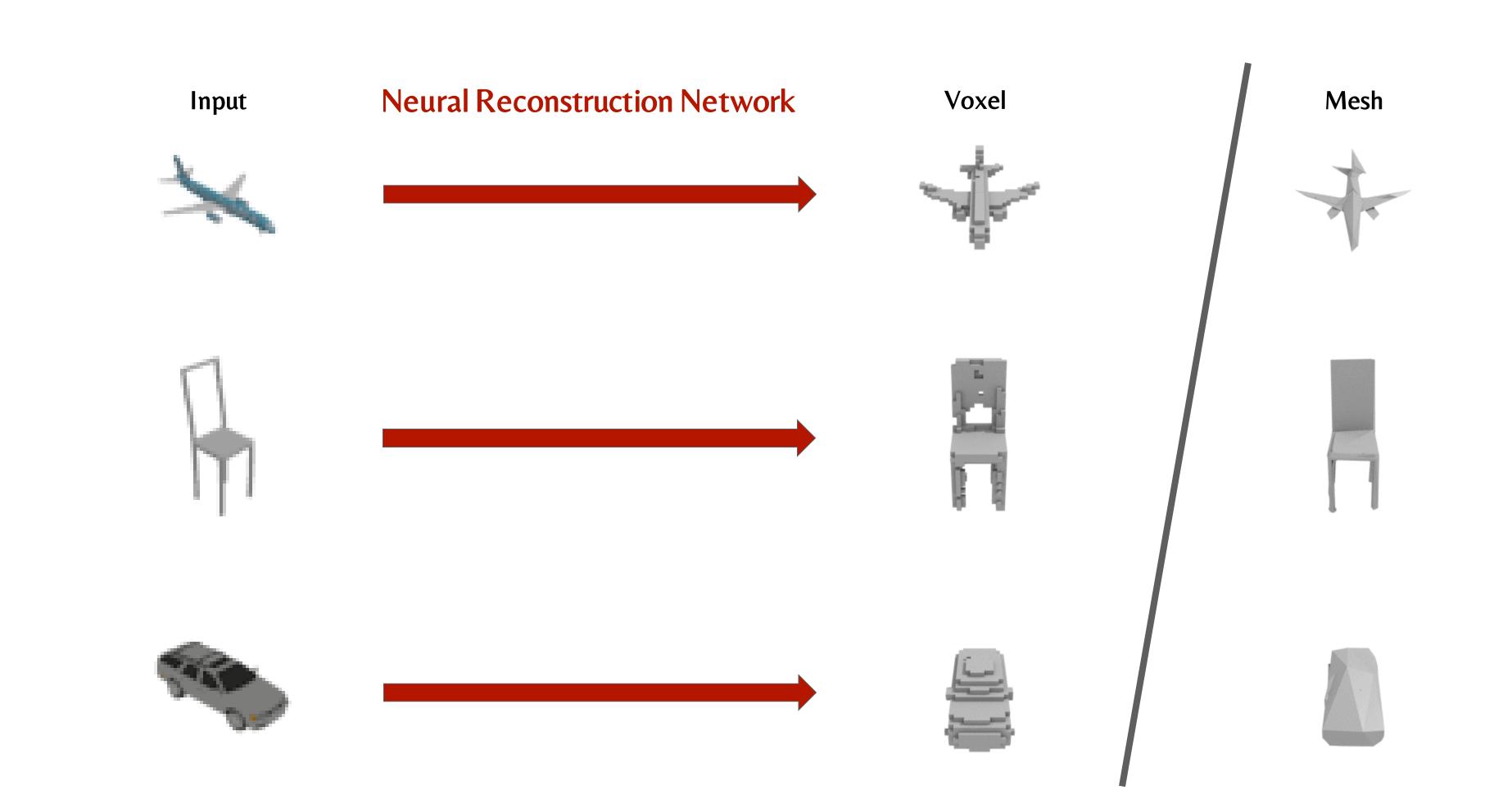
Polygon Mesh

- ✓ Reflect real world composition
- \checkmark Can have high resolutions
- × Memory consumption
- × Manhattan world bias



Voxel

• Different representations examples



Preliminaries

Preliminaries

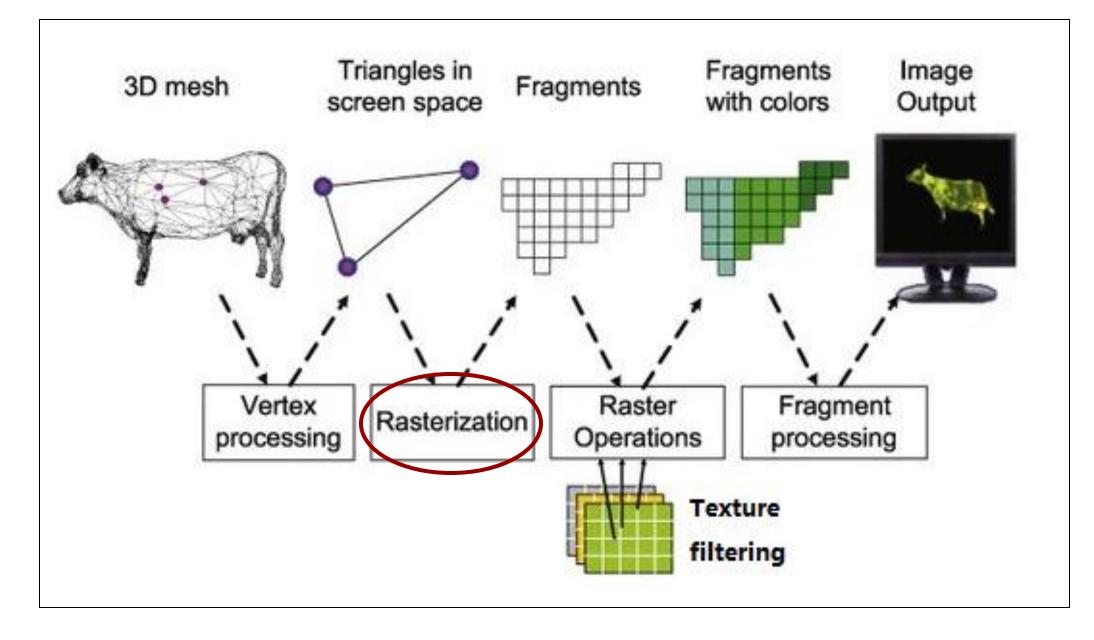
• What is differentiable rendering?

"Rendering is the process of generating an image from a 2D or 3D model by means of a computer program"

Is it possible to perform automatic differentiation through it?

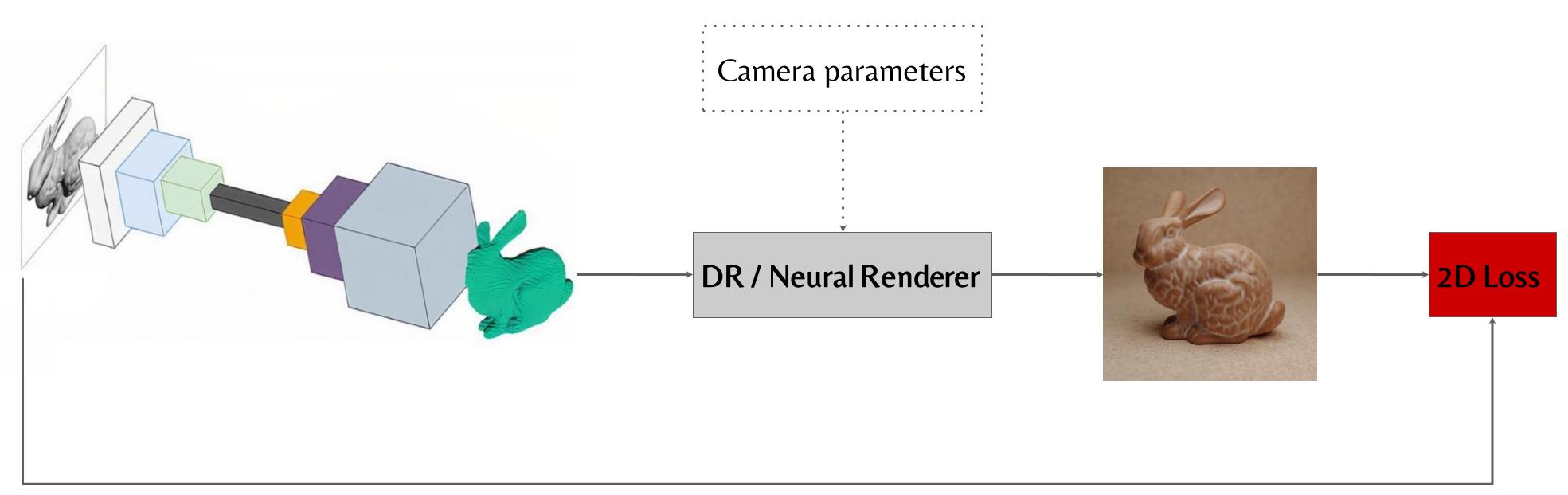
- → Approximate forward pass (Soft Rasterizer)
- → Approximate backward pass (OpenDR, NMR)

Alternative approach \rightarrow Neural Rendering: Learn the rendering process from data



Preliminaries

• How to exploit rendering in reconstruction?

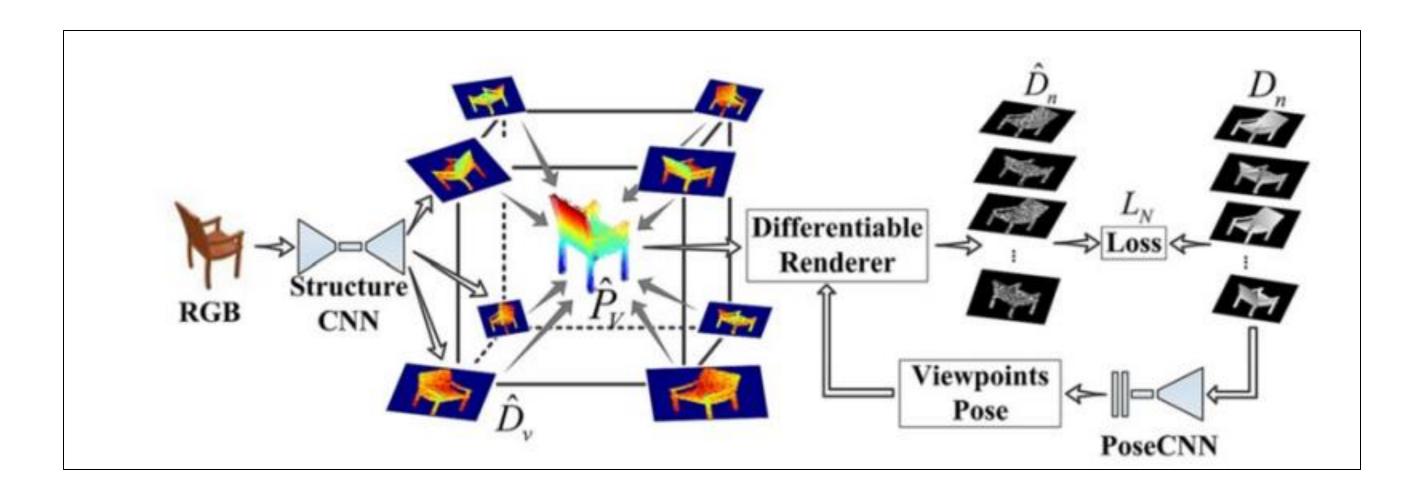


Advantages of 2D annotations w.r.t. 3D annotations:

✓ Labelling accurately 2D data is easier ✓ Allows self-supervision

✓ Collecting 2D data is easier and less costly

• A first model exploiting what we just discussed



- → Differentiable renderer allows depth maps as targets
- \rightarrow Training first on syntethic dataset, then on wild images

Jin et al. "Weakly-Supervised Single-view Dense 3D Point Cloud Reconstruction via Differentiable Renderer"

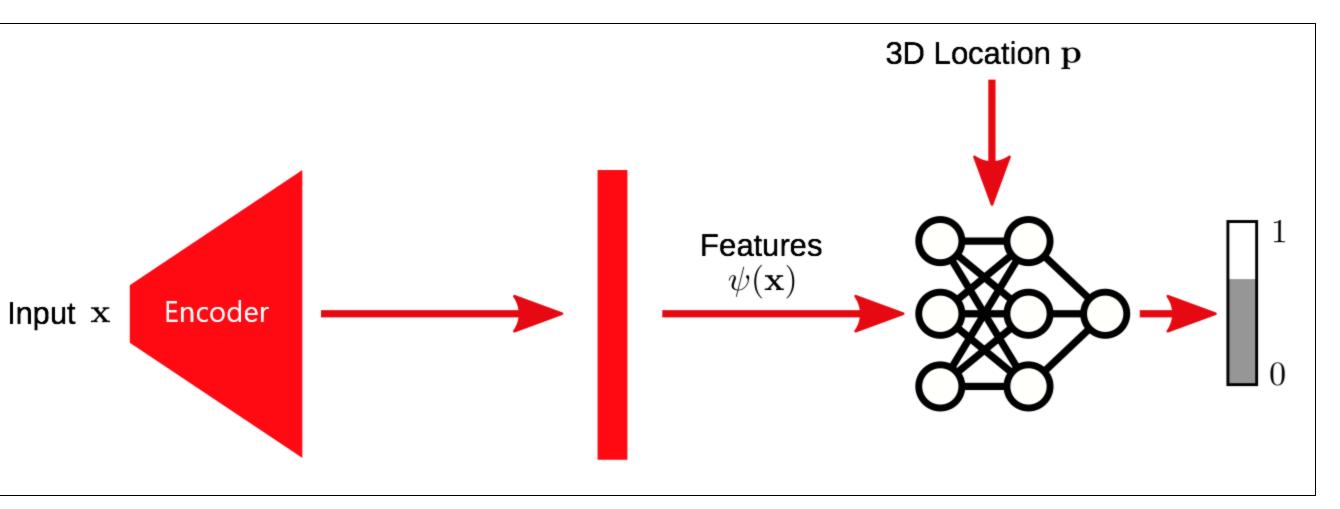
→ Predicts multiple views to estimate 3D point cloud representation

• A model exploiting an implicit 3D representation: Occnet

- → Learn an occupancy function assigning occupancy probability to an input 3D point
- → Training: sample the GT volume + cross entropy loss
- \rightarrow Inference uses an algorithm to extract 3D model

✓ Allows different input representations by changing the encoder ✓ Potentially allow infinite resolution

Ansari et al. "Occupancy Networks: Learning 3D Reconstruction in Function Space"



- Occnet successor: D-Occnet
- \rightarrow OccNet lacks 3D info
- → Extend by connecting 2 OccNet together
- → Effectively add 3D information

O-NI-+ **ResNet-18** Input Image 256 MISE + **Marching Cubes Final Mesh**

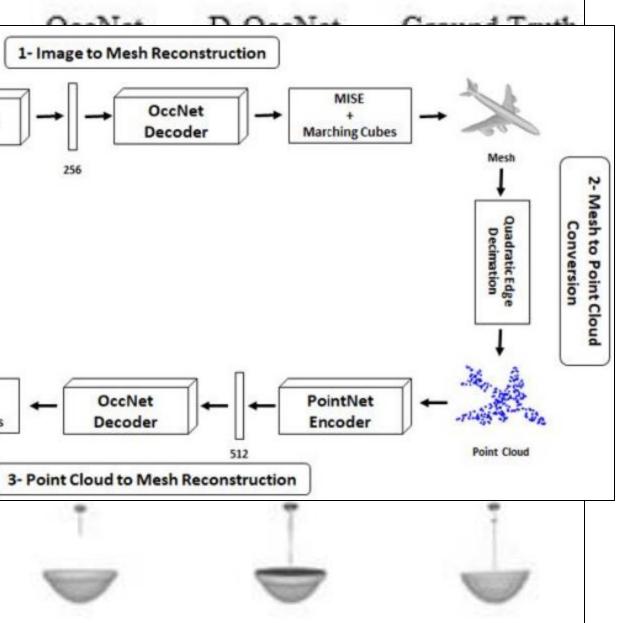
Ansari et al. "D-OccNet: Detailed 3D Reconstruction Using Cross-Domain Learning"

OccNet

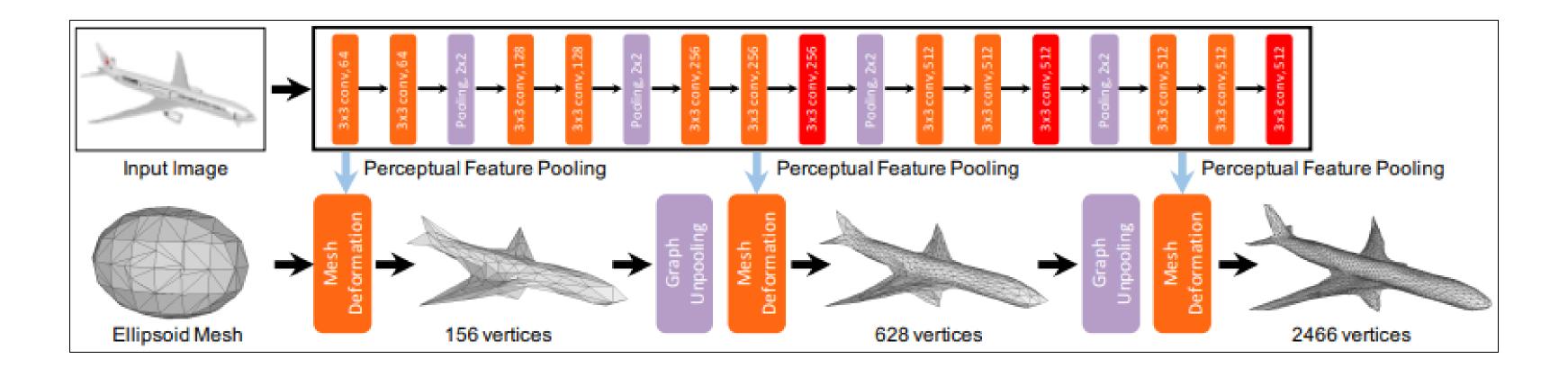
D-OccNet

Image \rightarrow Mesh

Image \rightarrow Mesh \rightarrow Point Cloud \rightarrow Mesh

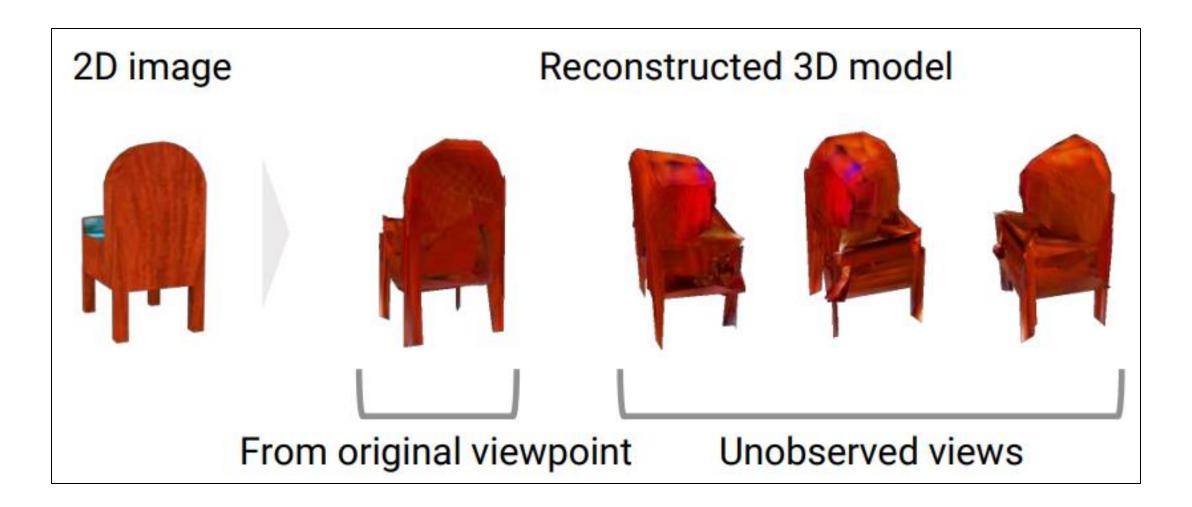


- Progressively deforming a predefined shape: Pixel2Mesh
- → Pre-defined ellipsoid mesh
- → Image feature network + Mesh deformation network
- → Mesh deformation through Graph-based Convolutional Neural Network
- → Progressively add vertices to increase the capacity of handling details



Wang et al. "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images"

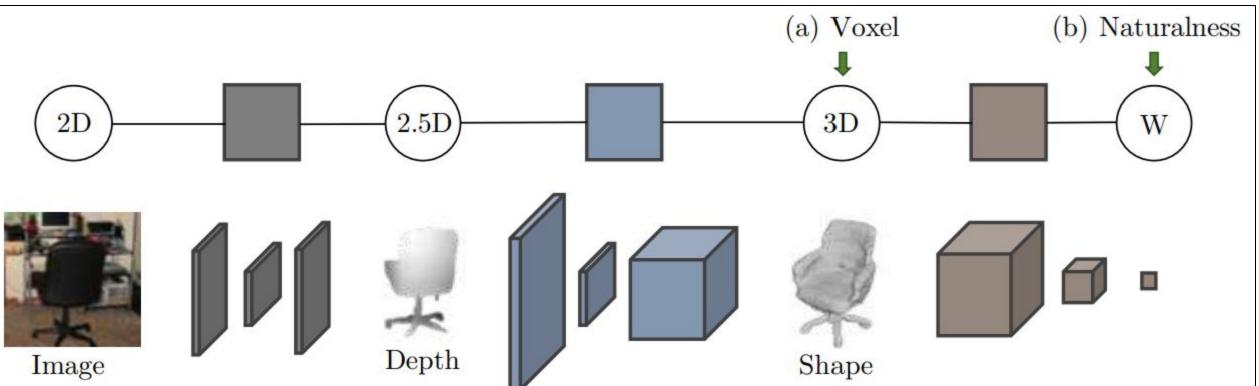
• Still, lots of models struggle with the reconstruction of unobserved views:



Can we leverage or learn prior shapes?

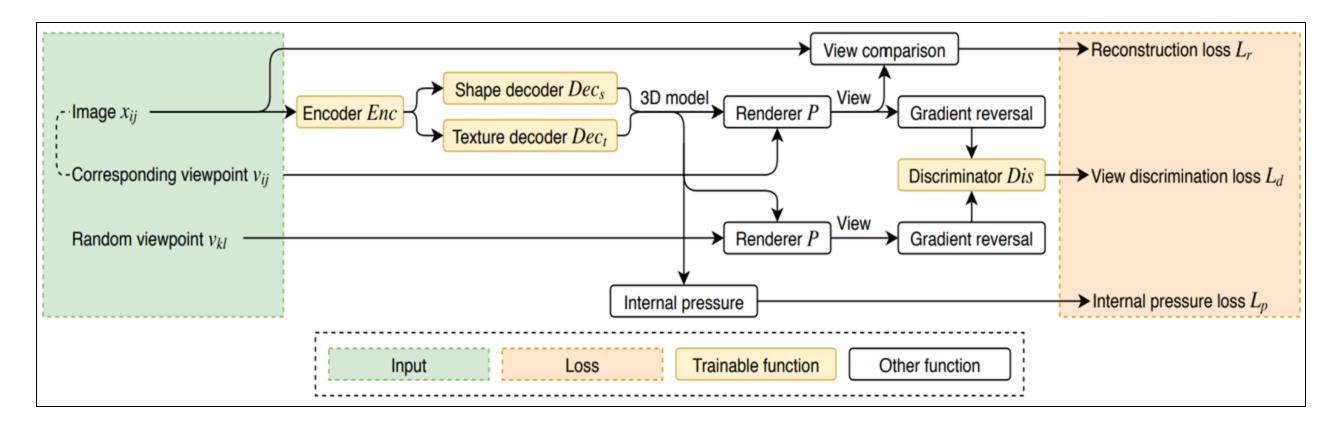
Related Works

- Adversarial models implicitly learning shape priors:
- \rightarrow Penalize the model for unrealistic shapes
- → Intermediate 2.5D sketches before 3D shape
- \rightarrow Pre-trained GAN, only discriminator is kept
- → Adversarial task: discriminate natural shapes from unnatural ones



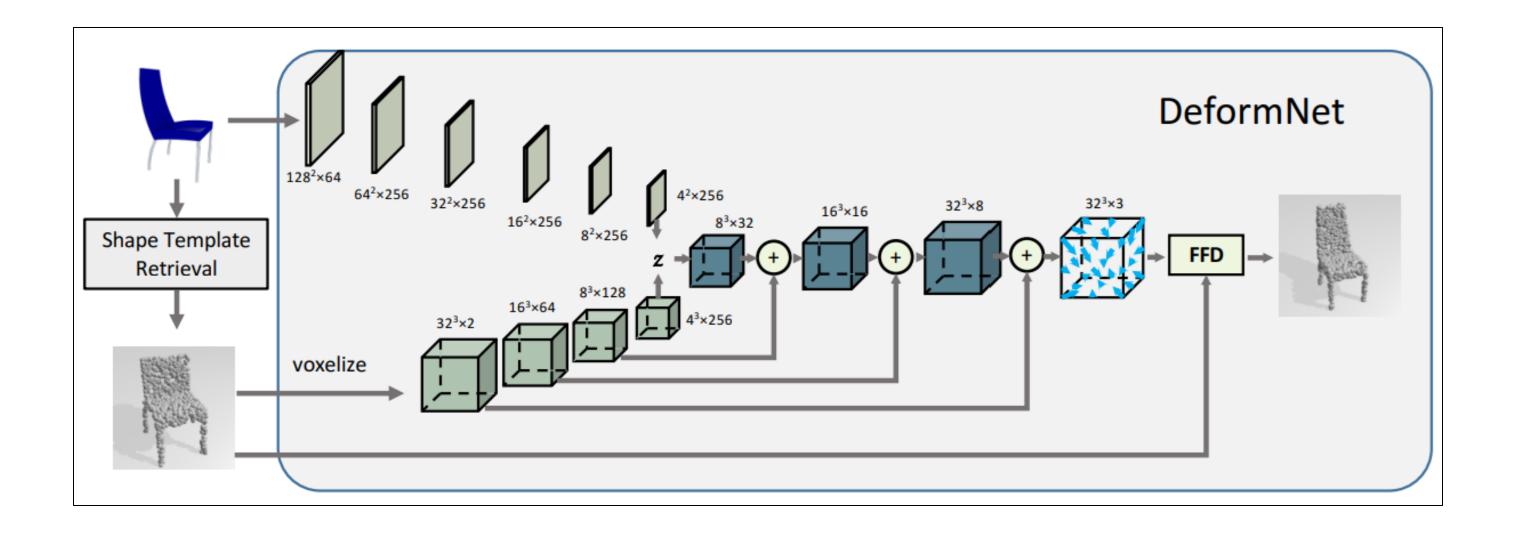
Wu et al. "Learning Shape Priors for Single-View 3D Completion and Reconstruction"

- → Learn priors on 2D views
- \rightarrow Generate 3D mesh by moving the vertices of a pre-defined mesh
- \rightarrow DR to generate views of the reconstructed shape
- \rightarrow Adversarial task: recognize original vs novel views



Kato et al. "Learning View Priors for Single-view 3D Reconstruction"

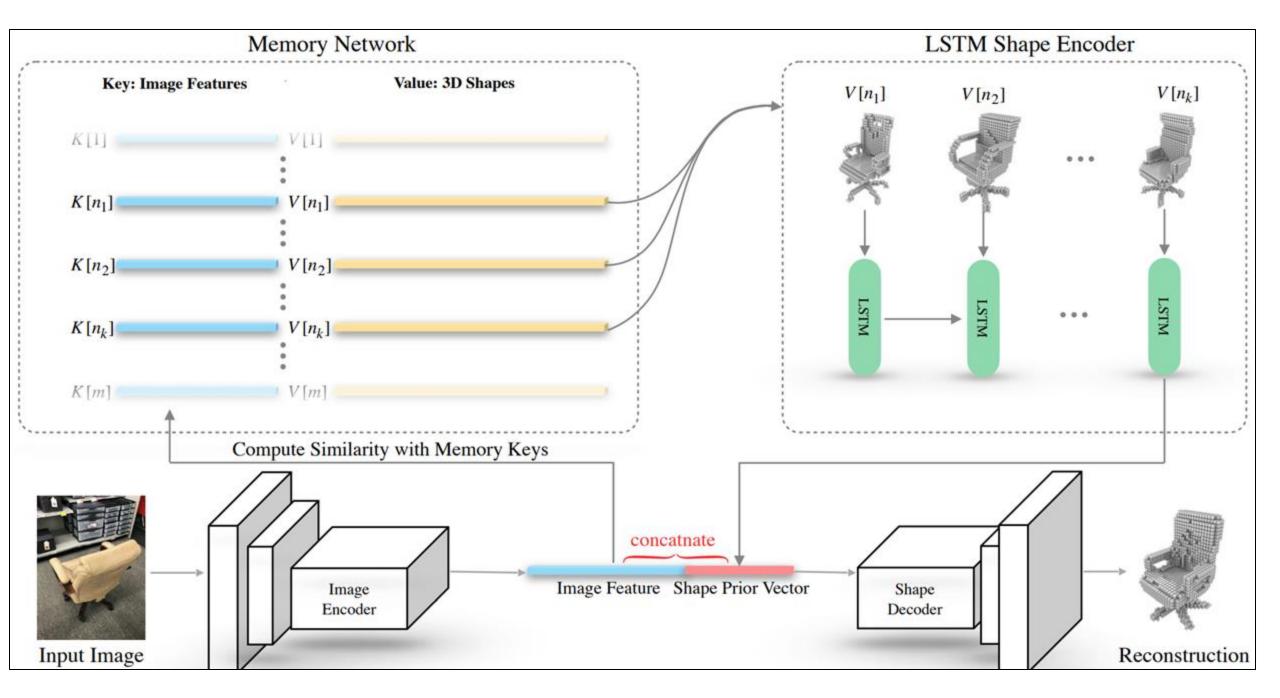
- Exploiting a database of high-quality CAD models: DeformNet
- → Search closest template in database leveraging metric learning
- \rightarrow Deform template by moving control points defined by a deformation layer
- \rightarrow Decoder output is the offset of the control points



Kuryenkov et al. "DeformNet: Free-Form Deformation Network for 3D Shape Reconstruction from a Single Image"

- Memory network storing prior shapes
- → Memory triplets «K,V,Age»:
 - ◆ K: Image features
 - ◆ V: Voxel shape (GT volumes)
 - ◆ Age: alive time since last successful match
- \rightarrow Matching through key similarity
- → Writing through value similarity
- → Recurrent network takes all matching priors to produce a shape prior vector

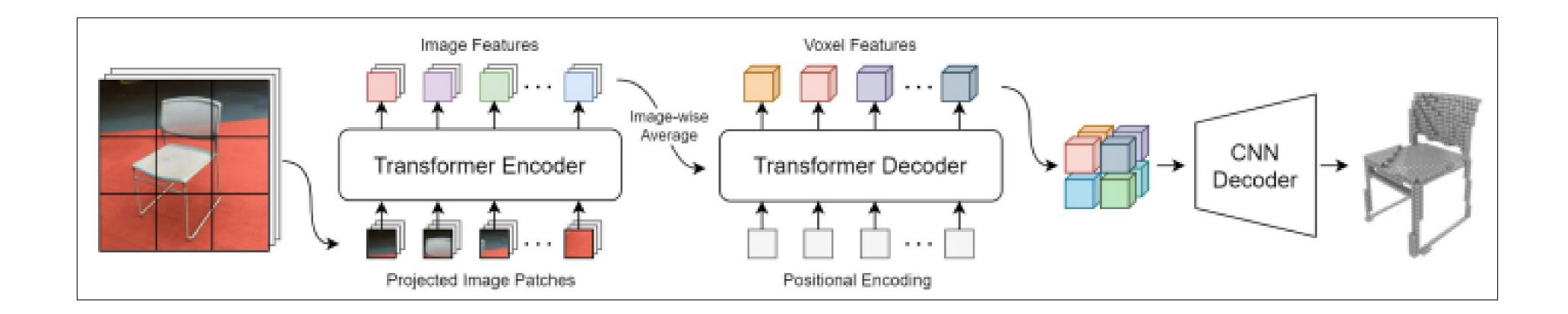
This architecture reminds attention mechanism...



Yang et al. "Single-View 3D Object Reconstruction from Shape Priors in Memory"

- Transformer model for 3D reconstruction
 - \rightarrow Adopts a ViT-like architecture encoding image patches

 - \rightarrow CNN decoder upsamples with 3D convs the voxel features



Shi et al. "End-to-End Single and Multi-View 3D Reconstruction with Transformers"

 \rightarrow Decoder processes all M³ learnable positional encodings in parallel

Summing up

- DR/NR can be used to train a 3D model on 2D annotations
- Multi-step processing can be useful to progressively add information
- Prior shape knowledge can be exploited in different ways:
 - Knowledge of natural 3D shapes (Implicit)
 - Knowledge of natural 2D views (Implicit)
 - Single prior shape deformation (Explicit)
 - Multiple prior shapes combination (Explicit)
- Graph networks are effective with mesh deformation
- Transformer models can be used effectively and still quite unexplored

How can we combine and enhance this approaches and ideas?

Research Directions

Goal#1

Investigate novel approaches by leveraging shape priors and the new architectures

Challenges

- General architecture and the specific design of its parts
- How to represent priors
- How to use the priors
- Training paradigm
- Dataset(s) to use

Motivation

The previosly mentioned works and ideas suggest new possibilities which are worth to explore

Research Directions

Goal#2

Analyze impact of different scale object reconstruction and the possibility of performing scene parsing by parametrized shape priors

Challenges

- Dataset to use
- Metrics have to be changed
- Model architecture

Motivation

Sometimes we are not interested in reconstructing exactly the scene, but to "reproduce" it objectwise by some existing models

Evaluation Metrics

Intersection over Union (IoU):

 $IoU(X', X) = \frac{\sum_{i} I(X_i > \epsilon) * I(V_i)}{\sum_{i} I(I(X_i > \epsilon) + *I(V_i))}$

Chamfer Distance (CD): $d_{CD}(S_1, S_2) = \sum_{x \in S_1} \min_{y \in S_2} ||x - y||_2^2 + \sum_{x \in S_2} \min_{y \in S_1} ||x - y||_2^2$

Earth Mover's Distance (EMD): $d_{EMD}(S_1, S_2) = \min_{\phi: S_1 \to S_2} \sum_{x \in S_1} ||x - \phi(x)||_2$

Goal#1

We can use these metrics and directly compare to state-of-the-art-models

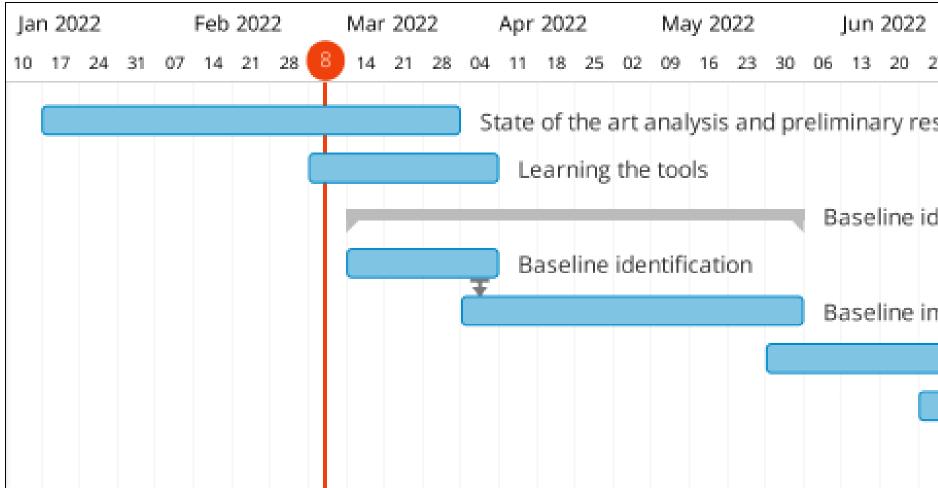
Goal#2

Using these metrics would not make much sense \rightarrow We expect to modify them or use different ones

Research Plan

Two phases approach:

- I. Build a baseline model to fully experience and understand the problem and its practical challenges
- II. progressively refine the model by following the goal(s)



2	Jul 2022					Aug 2022					Sep 2022				Oct 2022					Nov 2022				Dec 2022				
27	04	11	18	25	01	08	15	22	29	05	12	19	26	03	10	17	24	31	07	14	21	28	05	12	19	26	02	09
esea	rch	٦																										
iden	tific	cati	on a	nd	imp	lem	ent	atio	n																			
imp	em	ent	atio	n																								
																В	asel	line	adv	anc	em	ent	5					
																			Т	estiı	ng							
																									W	/riti	ng	