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WHAT IS SINGLE-VIEW 3D RECONSTRUCTION
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Input

Image of an object I

Output

Predicted 3D Shape of the represented object 𝑆

Predictor f𝜗(I)

f𝜗(I)

2D input

3D output



WHY IS IT IMPORTANT?

Videogames

Medical
Imaging
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Robotic
Mapping

VR &  
Metaverse

Reverse 
Engineering

Cultural 
Heritage
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HOW TO REPRESENT 3D SHAPES
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POINT CLOUDS

Relatively easy to collect

Exact representation

Often not directly used

Do not model connectivity

SURFACE MESHES

Easy to render and transform

Computers optimized for it

Curved objects approximated

Don’t hold up in all resolutions

VOXELS

Direct pixel extension

Can have high resolutions

Memory consumption

Manhattan world bias
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DATASET
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ShapeNet subset: 

• 13 categories of voxelized objects and corresponding renderings

• 44k models

• 323 resolution

2022

Following the literature for 3D diffusion models, we use mainly the 

aeroplane, car, chair categories.



INTERSECTION OVER UNION
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Intersection over Union (IoU): 𝐼𝑜𝑈 𝐴,𝐵 =
𝐴 ∩ 𝐵

|𝐴 ∪ 𝐵|

IoU:

shapes A, B

2022
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ISSUES OF 3D RECONSTRUCTION NETWORKS
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Scores are not heavily impacted

Realism, integrity and structural correctness are not considered.

SoTA 3D reconstruction models reach impressive scores.

Unusable in many applications!

3D-Retr



OUR OBJECTIVE
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2022

Generative approaches learn the structural semantics of the training data.

OUR AIM

Develop a 3D image-driven generative model able to both capture 

realism aspects while respecting the features of the object in the image

Generative models may solve the presented issues.

Some applications
may not need exact reconstructions

require realistic and structurally correct objects.
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DENOISING DIFFUSION PROBABILISTIC MODELS

Training

Model learns the backward process by

predicting the noise added w.r.t. prev step. 
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Generation

Start from random noise.

Denoise for n steps → sample from t=0.

Forward process: add noise at each step Backward process: denoise until step 0

NN
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GUIDANCE

2022 14

DDPMs can be conditioned to generate samples respecting some 

additional information y:

𝜇 𝑥𝑡 , 𝑡 → 𝜇 𝑥𝑡, 𝑡 | 𝑦

The conditioning token y is an embedding vector/tensor that can represent:

• A class/category

• Information from a different domain
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Approaches

classifier guidance classifier-free guidance



2D DIFFUSION
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Diffusion models obtained impressive results in image generation.                  

In particular, text-driven image generation models as:

stability.ai
stable diffusion

"A robot couple fine dining with Eiffel Tower in the background."
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3D DIFFUSION
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What about 3D diffusion in the literature?

REPRESENTATION

Limited to point 

clouds

RESULTS

SoTA in shape 

generation

CONDITIONING

unguided      

class-guided

Voxels Image-guided
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ANALYZING VOXEL DIFFUSION
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Visualization of voxel diffusion, data is thresholded at 0.5.

The last step is shown both with original shape highlighted and without.
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ANALYZING VOXEL DIFFUSION
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The distribution of data is progressively transformed into a Standard Gaussian distribution. 
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3D DIFFUSION
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What about 3D diffusion in the literature?

REPRESENTATION

Limited to point 

clouds

RESULTS

SoTA in shape 

generation

CONDITIONING

unguided      

class-guided 

shape-latents

Voxels Image-guided
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CISP:
CONTRASTIVE IMAGE-SHAPE PRETRAINING

Build a joint image-shape space by 

learning to associate shapes and 

images

Training

batches of (image,shape) pairs

cosine similarity matrix

Cross Entropy over rows and columns
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CISP CONFIGURATIONS

Image Encoder

Vision Transformer

Shape Encoder

2 configuration tested
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CNN Transformer:
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CISP EMBEDDING SPACE ANALYSIS
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The model captures details and subcategories.

For example:

• Airplanes: two main clouds, combat and 

line airplanes.

• Tables: higher tables with lower d1. Shelves

are added with higher d0.

• Cars: bigger cars increasing d1, with sports

cars and trucks/buses on the extremes. 
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VISUALIZATION OF CISP EMBEDDING SPACE

*The space shown here is from the best transformer configuration 
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CISP APPLICATIONS:              
RECONSTRUCTION BY RETRIEVAL METHOD
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Given a database of shapes:

1. Project test image 

2. Calculate similarity w.r.t. each 

database shape

3. Find argmax

4. Return the corresponding shape
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CISP AS A ZERO-SHOT MODEL: 
RECONSTRUCTION BY RETRIEVAL RESULTS

2022 28

Shape selected from dataset ›› Realistic and structurally correct

Good results in terms of coherence to the image.

3D-Retr

test set IoU

CISP-retrieval

Aeroplane 0.645

Car 0.76

Chair 0.412

Table 0.436

Watercraft 0.458

Overall 0,542
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3D DIFFUSION
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What about 3D diffusion in the literature?

REPRESENTATION

Limited to point 

clouds

RESULTS

SoTA in shape 

generation

CONDITIONING

unguided      

class-guided 

shape-latents

Voxels Image-guided
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IC3D PIPELINE
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Pipeline of our image-driven 3D diffusion model
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y



QUALITATIVE RESULTS
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QUANTITATIVE RESULTS
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1-NNA(%)

Shape Model CD EMD

Airplane

PointFlow 75.68 70.74

SoftFlow 76.05 65.80

DPF-Net 75.18 65.55

Shape-GF 80.00 76.17

luo et al. 62.71 67.14

PVD 73.82 64.81

Ours 57.64 53.89

Car

PointFlow 58.10 56.25

SoftFlow 64.77 60.09

DPF-Net 62.35 54.48

Shape-GF 63.20 56.53

luo et al. - -

PVD 54.55 53.83

Ours 52.44 51.68

Chair

PointFlow 62.84 60.57

SoftFlow 59.21 60.05

DPF-Net 62.00 58.53

Shape-GF 68.96 65.48

luo et al. 62.08 64.45

PVD 56.26 53.32

Ours 53.58 51.73
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1-NNA measures the accuracy of a 

1-NN classifier in distinguish real 

and generated samples.

Optimal score is 50%

1-NNA measures both quality and 

diversity.



SINGLE VIEW 3D RECONSTRUCTION RESULTS
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As the model is probabilistic, we display the maximum scores obtained when 

sampling an increasing amount of shapes.

3D-R2N2 OGN Pixel2Mesh AttSets Pix2Vox++/F 3D-Retr TMV-Net Ours(1) Ours(5) Ours(10) Ours(15)

aeroplane 0,512 0,587 0,508 0,594 0,607 0,704 0,691 0,540 0,600 0,620 0,630

car 0,798 0,828 0,67 0,844 0,841 0,861 0,87 0,790 0,8237 0,8328 0,838

chair 0,466 0,483 0,484 0,559 0,548 0,592 0,721 0,407 0,476 0,494 0,506

overall 0,592 0,633 0,554 0,666 0,665 0,719 0,761 0,579 0,633 0,649 0,658

As expected, increasing the number of samples, the maximum IoU score 

increases.

Baselines SoTA models.



INTERSECTION OVER UNION
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Intersection over Union (IoU): 𝐼𝑜𝑈 𝐴,𝐵 =
𝐴 ∩ 𝐵

|𝐴 ∪ 𝐵|

IoU:

shapes A, B

2022



IOU FLAWS
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IoU measures exact correspondence, 

thus preferring correct but unrealistic 

models.

How can we measure coherence to 

the image with other metrics?



SIDE-BY-SIDE HUMAN EVALUATION
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150 evaluators

600 total questions,

20 per form

Each form is shown

to exactly 5 

evaluators



HUMAN EVALUATION RESULTS
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Human evaluation results

The majority of the evaluators prefer 

our model for realism in 69% of the 

questions.

Our model solves the realism issues 

arising in the 3D reconstruction 

approach.

It is also preferred for coherence, 

showing the effectiveness of the 

guidance.



PER-CLASS HUMAN EVALUATION RESULTS
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0/5 1/5 2/5 3/5 4/5 5/5 3/5 or higher

aeroplane 6,00% 16,50% 16,00% 24,50% 19,50% 17,50% 61,50%

car 12,50% 9,50% 19,00% 23,50% 19,50% 16,00% 59,00%

chair 7,50% 11,00% 13,00% 20,00% 16,50% 32,00% 68,50%

overall 8,67% 12,33% 16,00% 22,67% 18,50% 21,83% 63,00%

0/5 1/5 2/5 3/5 4/5 5/5 3/5 or higher

aeroplane 3,50% 12,50% 19,00% 16,50% 21,00% 27,50% 65%

car 9,50% 18,50% 20,50% 18,50% 19,00% 14,00% 52%

chair 4,00% 4,00% 1,50% 9,50% 20,00% 61,00% 91%

overall 5,67% 11,67% 13,67% 14,83% 20,00% 34,17% 69%

coherence per-class results

realism per-class results



INTERPOLATIONS
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Examples of intra- and inter-class interpolations. CISP embeddings are 

interpolated by spherical linear interpolation (Slerp) with a 0.2 step.



HAND-DRAWN SHAPES
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Thanks to CISP embeddings, we can also use handmade drawings

of objects as query images. IC3D produces relevant and high-quality

shapes even in this case.



LIMITATIONS AND FUTURE WORKS
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Limitation Solution

Scalability of the model Explore other 3D representations

Generalization on shape categories Train on more/vaster datasets

Single view conditioning Combine CISP embeddings

New techniques for DDPMsLow sampling speed (108s/sample)



CONCLUSIONS
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CISP

Joint image-shape embeddings

IC3D

Image-Driven Voxel diffusion

SoTA generation 

results

Coherent to the 

query image

Solve realism & 

structural issues
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