

SINGLE-VIEW SHAPE **RECONSTRUCTION VIA IMAGE-CONDITIONED 3D DIFFUSION**

Cristian Sbrolli

Advisor: Prof. Matteo Matteucci

Co-Advisor: Paolo Cudrano, Matteo Frosi

OUTLINE

Introduction

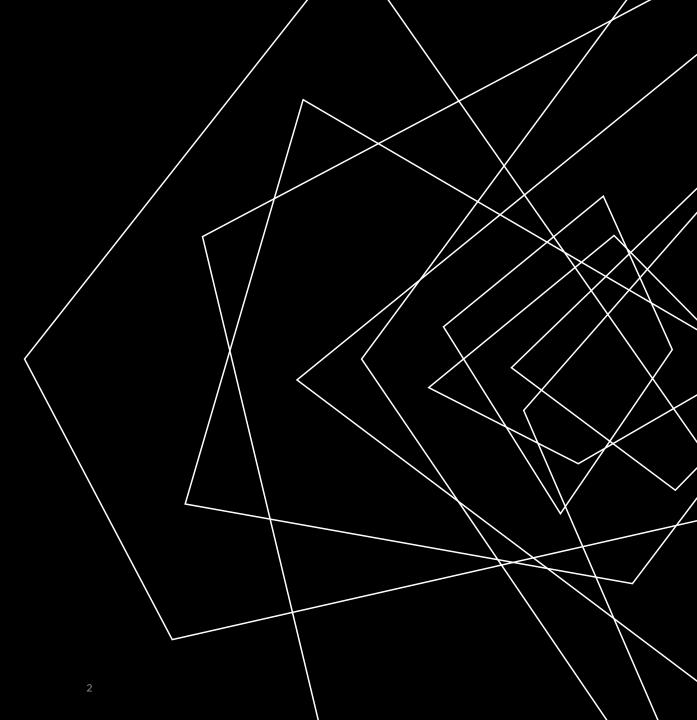
Problem Statement/Our Idea

Denoising Diffusion Probabilistic Models

ADVANCES IN 3D RECONSTRUCTION

CISP

IC3D



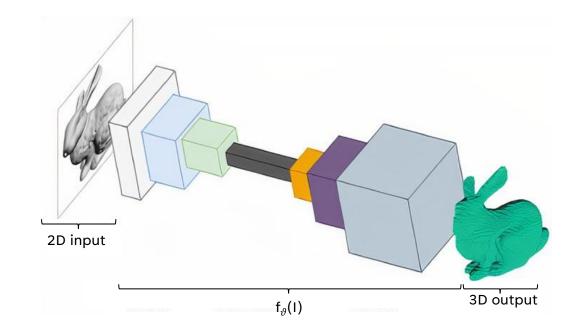
WHAT IS SINGLE-VIEW 3D RECONSTRUCTION

Input Image of an object I

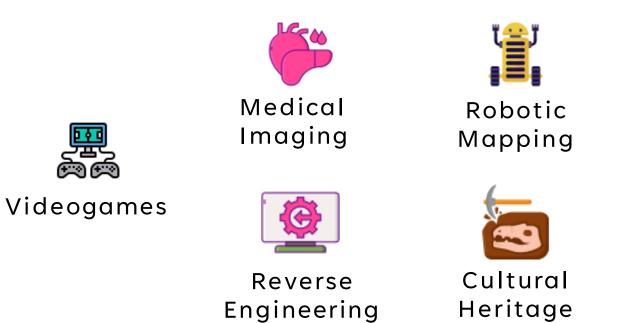
Predictor $f_{\vartheta}(I)$

 \otimes

 $\begin{array}{c} \textbf{Output} \\ \textbf{Predicted 3D Shape of the represented object } \overline{S} \end{array}$



WHY IS IT IMPORTANT?





VR &

Metaverse

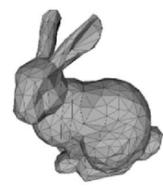
 \square

HOW TO REPRESENT 3D SHAPES

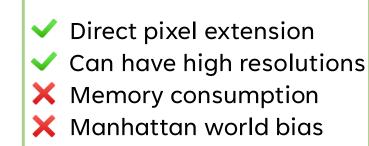
- Relatively easy to collect
 Exact representation
 Often not directly used
 Do not model connectivity
- Easy to render and transform
 Computers optimized for it
 Curved objects approximated
 Don't hold up in all resolutions

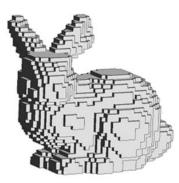


POINT CLOUDS



SURFACE MESHES



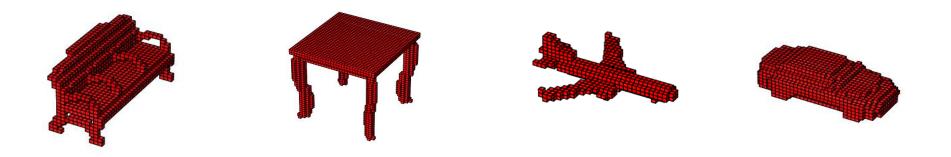


VOXELS

DATASET

ShapeNet subset:

- 13 categories of voxelized objects and corresponding renderings
- 44k models
- 32³ resolution

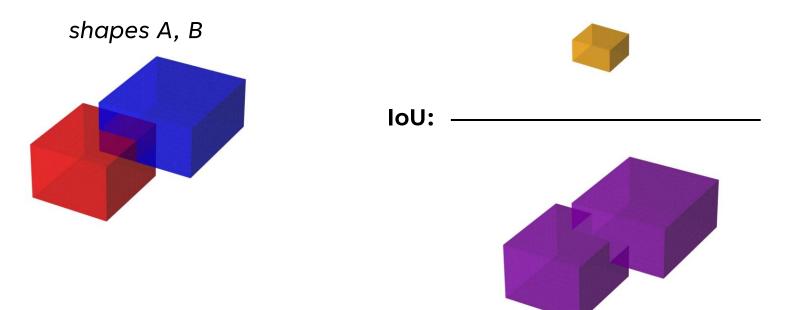


Following the literature for 3D diffusion models, we use mainly the aeroplane, car, chair categories.

6

INTERSECTION OVER UNION

Intersection over Union (IoU):
$$IoU(A,B) = \frac{|A \cap B|}{|A \cup B|}$$



OUTLINE

Introduction

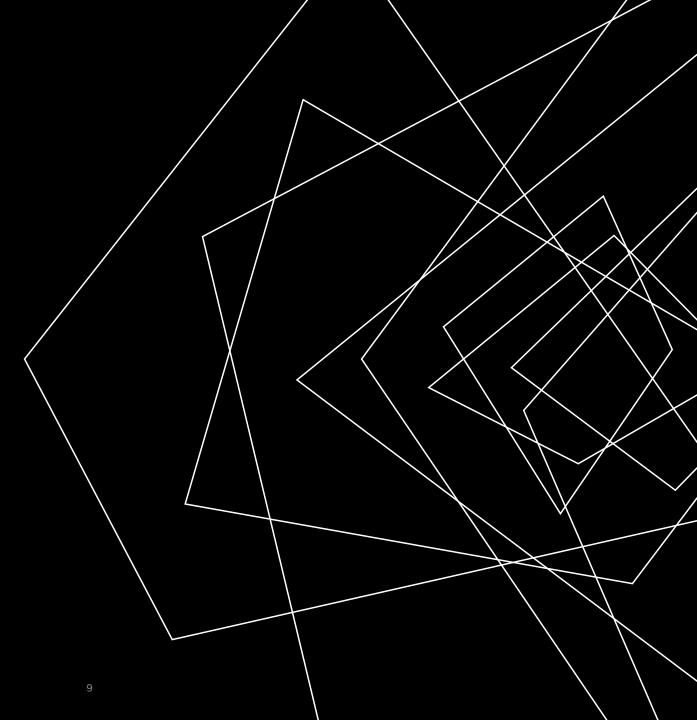
• Problem Statement/Our Idea

Denoising Diffusion Probabilistic Models

ADVANCES IN 3D RECONSTRUCTION

CISP

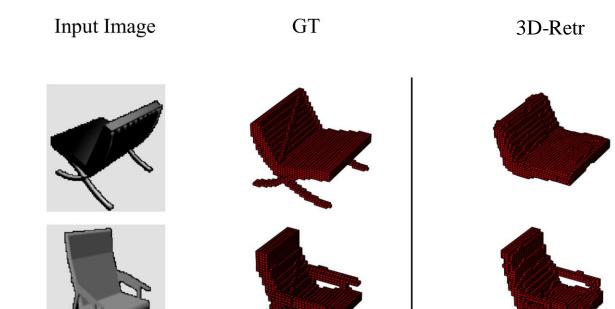
IC3D



ISSUES OF 3D RECONSTRUCTION NETWORKS

✓ SoTA 3D reconstruction models reach **impressive scores**.

Realism, integrity and structural correctness are not considered.



A Scores are **not heavily impacted**

X Unusable in many applications!

OUR OBJECTIVE

Some applications require realistic and structurally correct objects.

Generative approaches learn the structural semantics of the training data.

Generative models may solve the presented issues.

Develop a **3D image-driven generative model** able to both capture **realism aspects** while **respecting the features of the object in the image**

OUTLINE

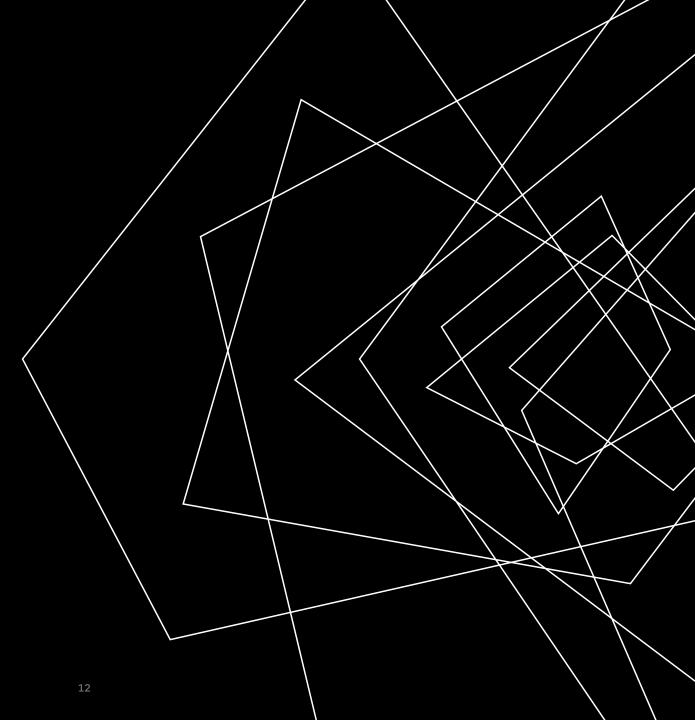
Introduction

Problem Statement/Our Idea

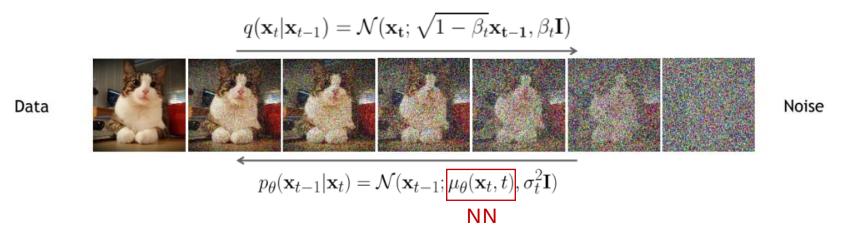
• Denoising Diffusion Probabilistic Models

CISP

IC3D



DENOISING DIFFUSION PROBABILISTIC MODELS



Forward process: add noise at each step

Backward process: denoise until step 0

Training

Model learns the backward process by

predicting the noise added w.r.t. prev step.

Generation

Start from random noise.

Denoise for n steps \rightarrow sample from t=0.

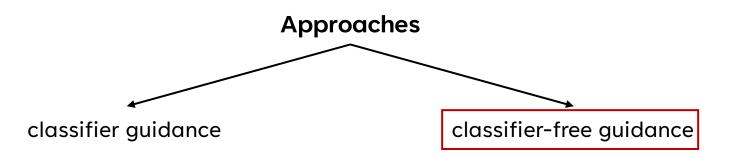
GUIDANCE

DDPMs can be conditioned to generate samples respecting some **additional information y**:

 $\mu(x_t, t) \to \mu(x_t, t \mid y)$

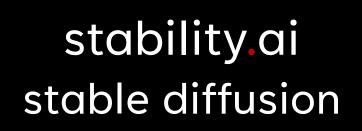
The conditioning token y is an embedding vector/tensor that can represent:

- A class/category
- Information from a different domain



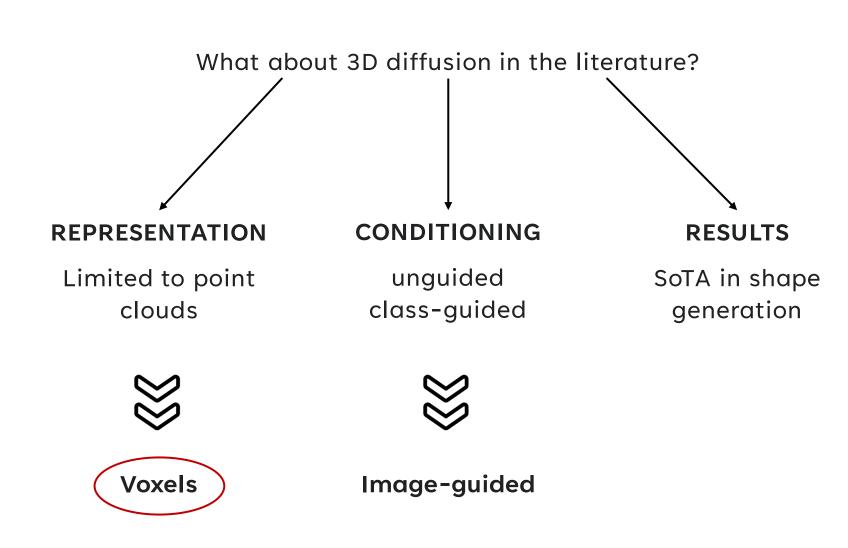
2D DIFFUSION

Diffusion models obtained impressive results in image generation. In particular, **text-driven image generation** models as:

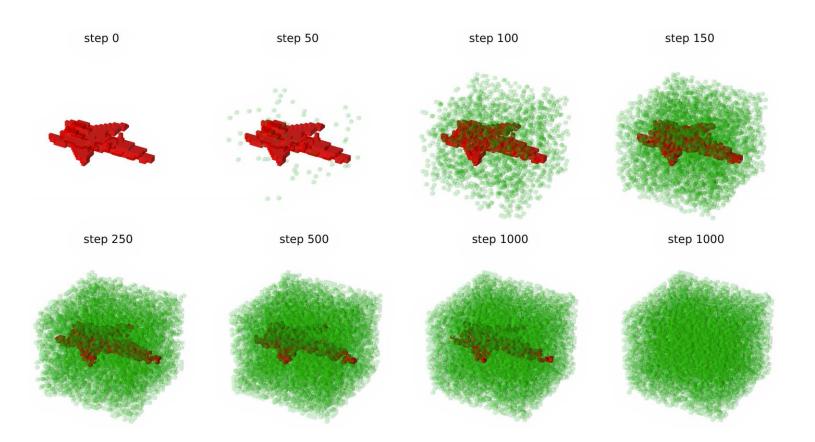


"A robot couple fine dining with Eiffel Tower in the background."

3D DIFFUSION



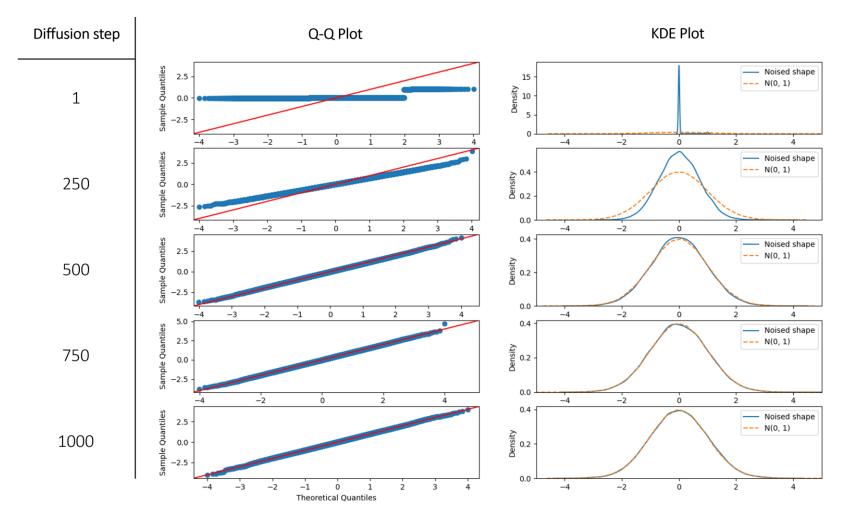
ANALYZING VOXEL DIFFUSION



Visualization of voxel diffusion, data is thresholded at 0.5.

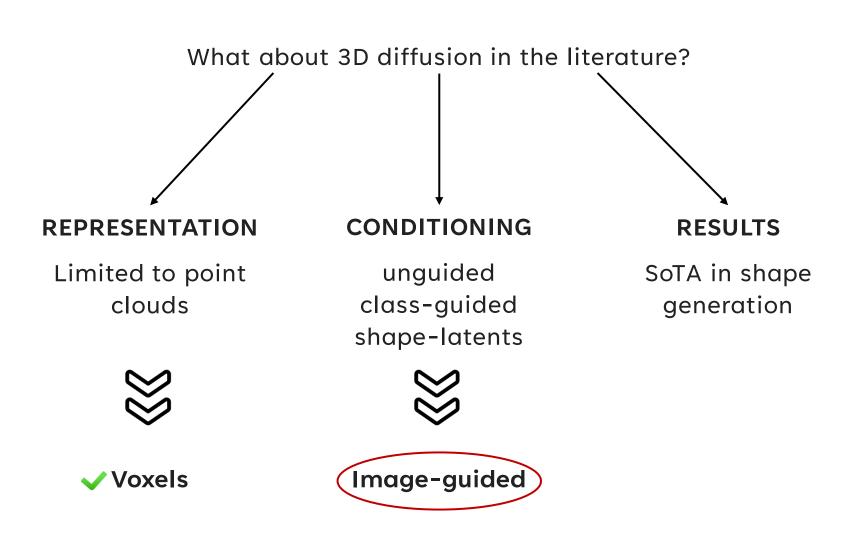
The last step is shown both with original shape highlighted and without.

ANALYZING VOXEL DIFFUSION



The distribution of data is progressively transformed into a Standard Gaussian distribution.

3D DIFFUSION



OUTLINE

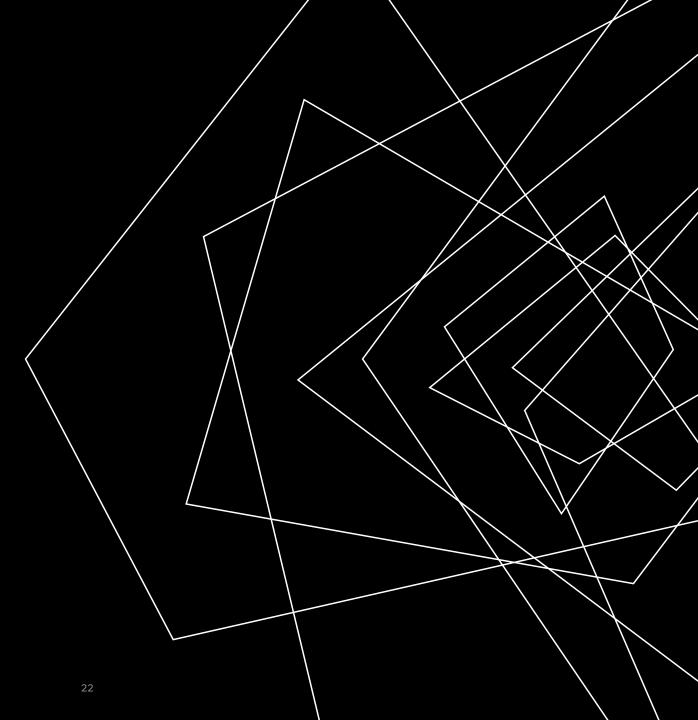
Introduction

Problem Statement/Our Idea

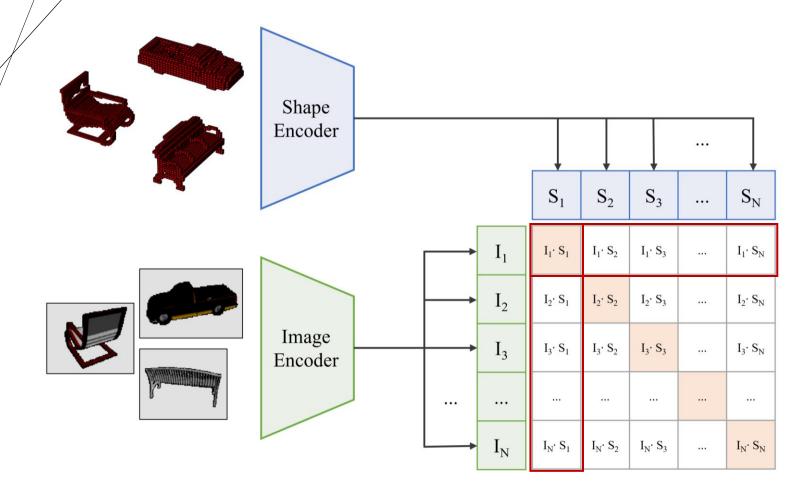
Denoising Diffusion Probabilistic Models

CISP

IC3D



CISP: CONTRASTIVE IMAGE-SHAPE PRETRAINING



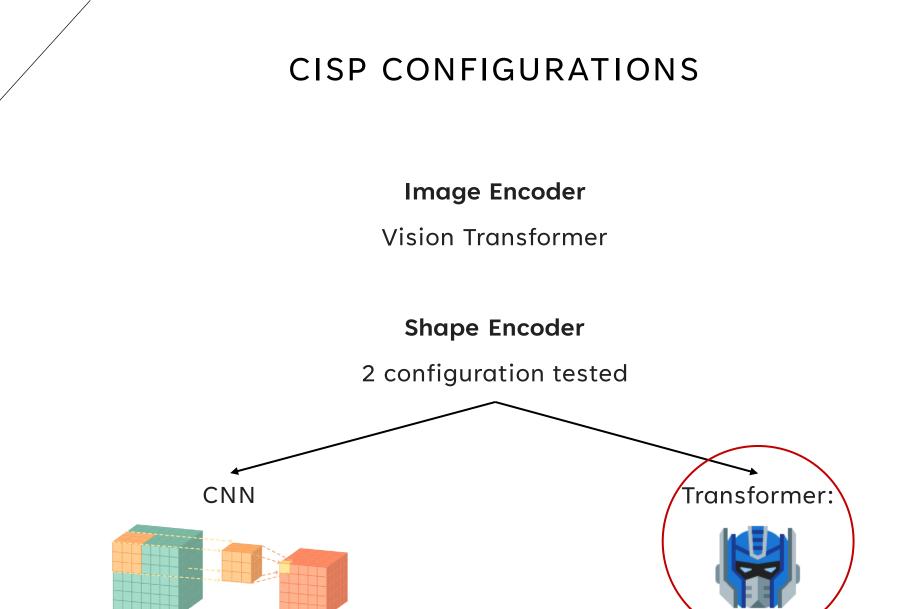
Build a joint image-shape space by learning to associate shapes and images

Training

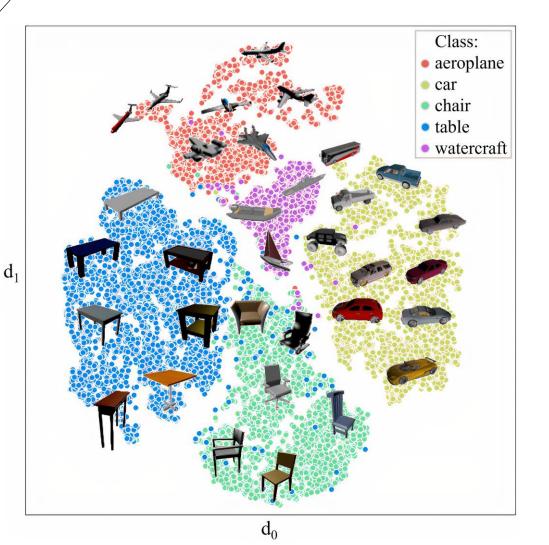
batches of (image, shape) pairs

cosine similarity matrix

Cross Entropy over rows and columns



CISP EMBEDDING SPACE ANALYSIS

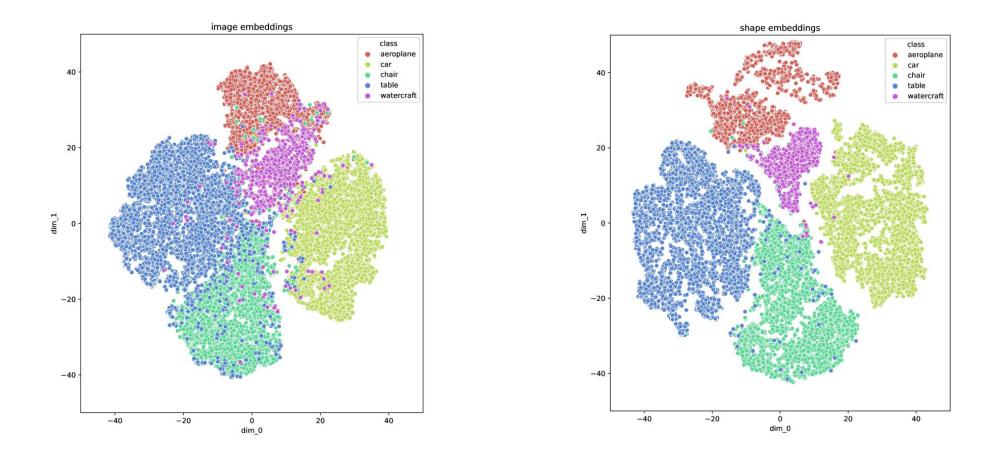


The model captures details and subcategories.

For example:

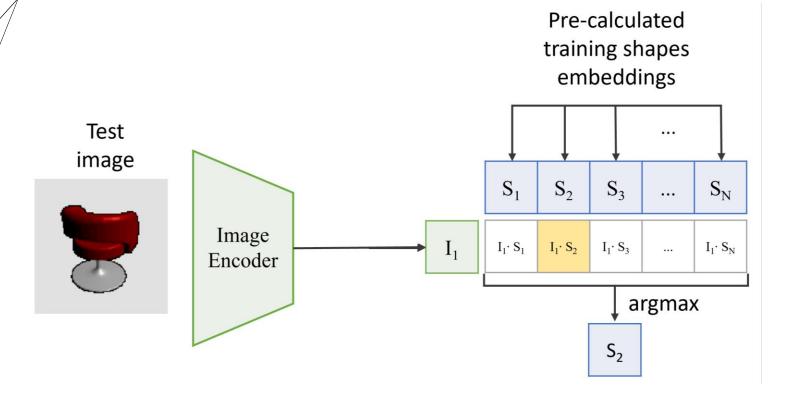
- Airplanes: two main clouds, combat and line airplanes.
- Tables: higher tables with lower d₁. Shelves are added with higher d₀.
- Cars: bigger cars increasing d₁, with sports cars and trucks/buses on the extremes.

VISUALIZATION OF CISP EMBEDDING SPACE



*The space shown here is from the best transformer configuration

CISP APPLICATIONS: RECONSTRUCTION BY RETRIEVAL METHOD



Given a database of shapes:

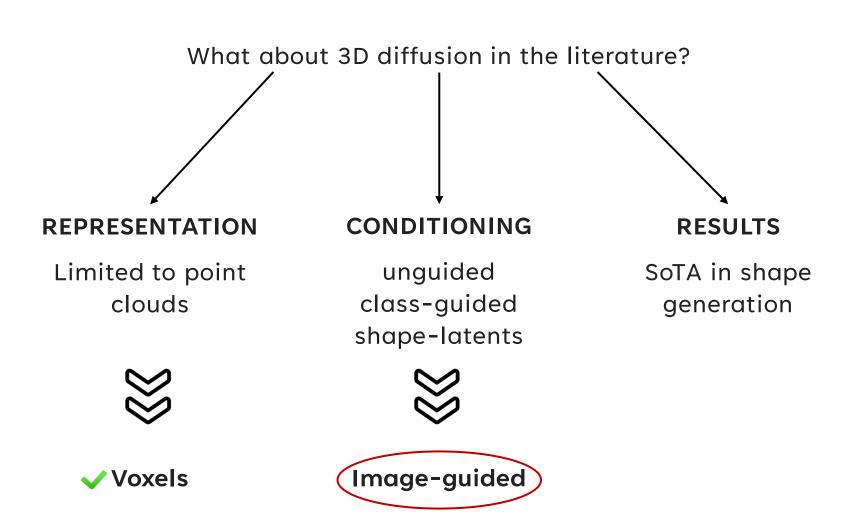
- 1. Project test image
- 2. Calculate similarity w.r.t. each database shape
- 3. Find argmax
- 4. Return the corresponding shape

CISP AS A ZERO-SHOT MODEL: RECONSTRUCTION BY RETRIEVAL RESULTS

Input Image	GT	3D-Retr	CISP-retrieval		
					CISP-retrieval
Gr		Van		Aeroplane	0.645
				Car	0.76
				Chair	0.412
				Table	0.436
			2 300	Watercraft	0.458
-				Overall	0,542
		and the second		test s	et IoU
7-1					

Shape selected from dataset >> Realistic and structurally correct Good results in terms of coherence to the image.

3D DIFFUSION



AGENDA

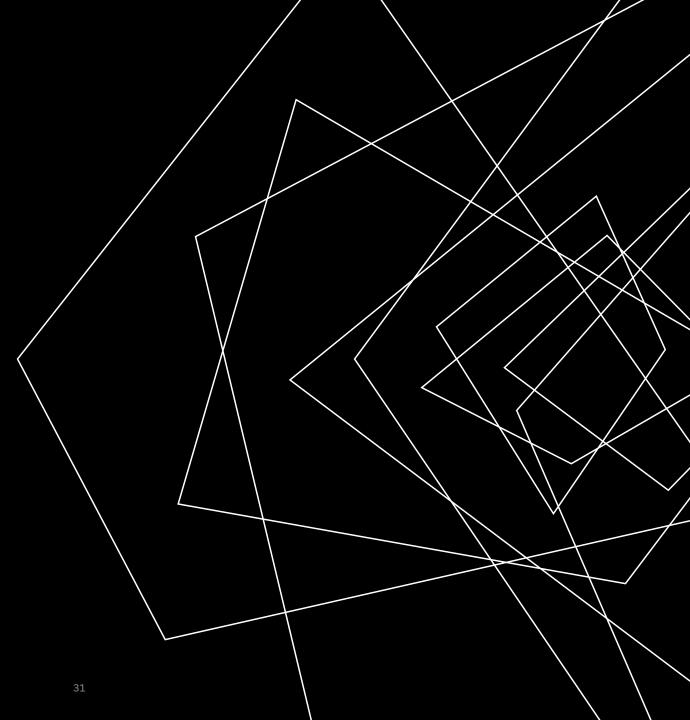
Introduction

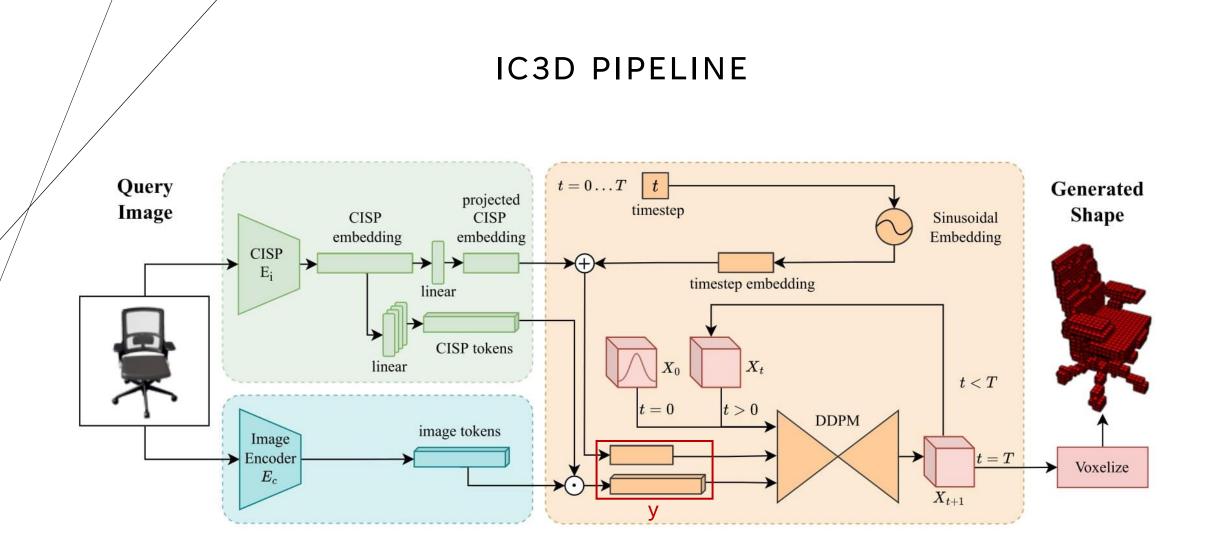
Problem Statement/Our Idea

Denoising Diffusion Probabilistic Models

CISP

IC3D





Pipeline of our image-driven 3D diffusion model

QUALITATIVE RESULTS

Input Image Generated Shapes

QUANTITATIVE RESULTS

		1-NNA(%)			
Shape	Model	CD	EMD		
	PointFlow	75.68	70.74		
	SoftFlow	76.05	65.80		
	DPF-Net	75.18	65.55		
Airplane	Shape-GF	80.00	76.17		
	luo et al.	62.71	67.14		
	PVD	73.82	64.81		
	Ours	57.64	53.89		
	PointFlow	58.10	56.25		
	SoftFlow	64.77	60.09		
	DPF-Net	62.35	54.48		
Car	Shape-GF	63.20	56.53		
	luo et al.	-	-		
	PVD	54.55	53.83		
	Ours	52.44	51.68		
	PointFlow	62.84	60.57		
	SoftFlow	59.21	60.05		
	DPF-Net	62.00	58.53		
Chair	Shape-GF	68.96	65.48		
	luo et al.	62.08	64.45		
	PVD	56.26	53.32		
	Ours	53.58	51.73		

1-NNA measures the accuracy of a1-NN classifier in distinguish realand generated samples.

Optimal score is 50%

1-NNA measures both quality and diversity.

SINGLE VIEW 3D RECONSTRUCTION RESULTS

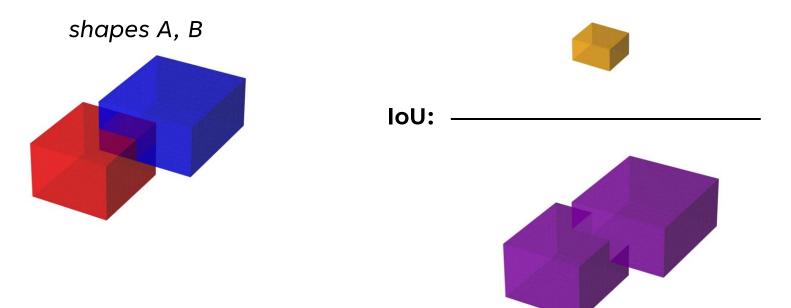
As the model is **probabilistic**, we display the maximum scores obtained when sampling an **increasing amount of shapes**.

			Baselines		SoTA models.						
	3D-R2N2	OGN	Pixel2Mesh	AttSets	Pix2Vox++/F	3D-Retr	TMV-Net	Ours(1)	Ours(5)	Ours(10)	Ours(15)
aeroplane	0,512	0,587	0,508	0,594	0,607	0,704	0,691	0,540	0,600	0,620	0,630
car	0,798	0,828	0,67	0,844	0,841	0,861	0,87	0,790	0,8237	0,8328	0,838
chair	0,466	0,483	0,484	0,559	0,548	0,592	0,721	0,407	0,476	0,494	0,506
overall	0,592	0,633	0,554	0,666	0,665	0,719	0,761	0,579	0,633	0,649	0,658

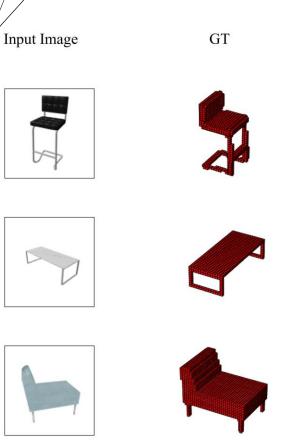
As expected, increasing the number of samples, the maximum IoU score increases.

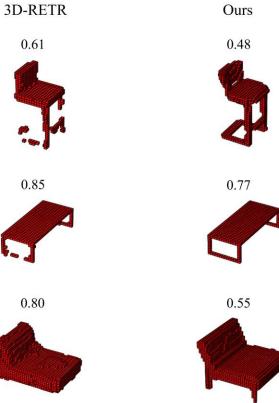
INTERSECTION OVER UNION

Intersection over Union (IoU):
$$IoU(A,B) = \frac{|A \cap B|}{|A \cup B|}$$



IOU FLAWS





IoU measures exact correspondence, thus preferring correct but unrealistic models.

How can we measure coherence to the image with other metrics?

SIDE-BY-SIDE HUMAN EVALUATION

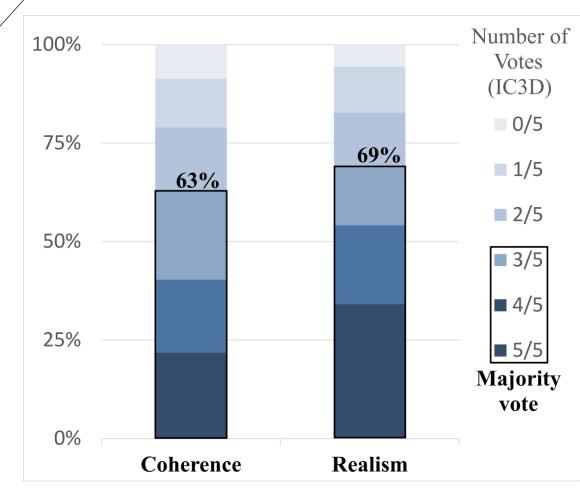
150 evaluators

600 total questions, 20 per form

Each form is shown to exactly 5 evaluators

Task 1		
Shape 1	Sh	ape 2
Which shape is more realistic?	O Shape 1	O Shape 2
Which shape better represents the image underneath?	○ Shape 1	○ Shape 2
1 2 3 4 5 6 7 8 9 10	11 12 13 14 15	16 17 18 19 20 End

HUMAN EVALUATION RESULTS



The majority of the evaluators prefer our model for realism in 69% of the questions.

Our model solves the realism issues arising in the 3D reconstruction approach.

It is also preferred for coherence, showing the **effectiveness of the guidance**.

Human evaluation results

PER-CLASS HUMAN EVALUATION RESULTS

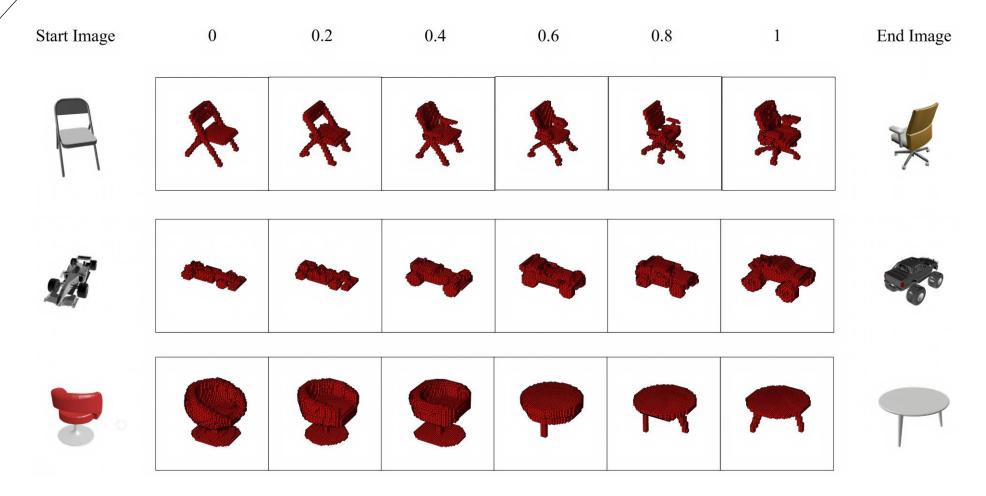
	0/5	1/5	2/5	3/5	4/5	5/5	3/5 or higher
aeroplane	6,00%	16,50%	16,00%	24,50%	19,50%	17,50%	61,50%
car	12,50%	9,50%	19,00%	23,50%	19,50%	16,00%	59,00%
chair	7,50%	11,00%	13,00%	20,00%	16,50%	32,00%	68,50%
overall	8,67%	12,33%	16,00%	22,67%	18,50%	21,83%	63,00%

coherence per-class results

	0/5	1/5	2/5	3/5	4/5	5/5	3/5 or higher
aeroplane	3,50%	12,50%	19,00%	16,50%	21,00%	27,50%	65%
car	9,50%	18,50%	20,50%	18,50%	19,00%	14,00%	52%
chair	4,00%	4,00%	1,50%	9,50%	20,00%	61,00%	91%
overall	5,67%	11,67%	13,67%	14,83%	20,00%	34,17%	69%

realism per-class results

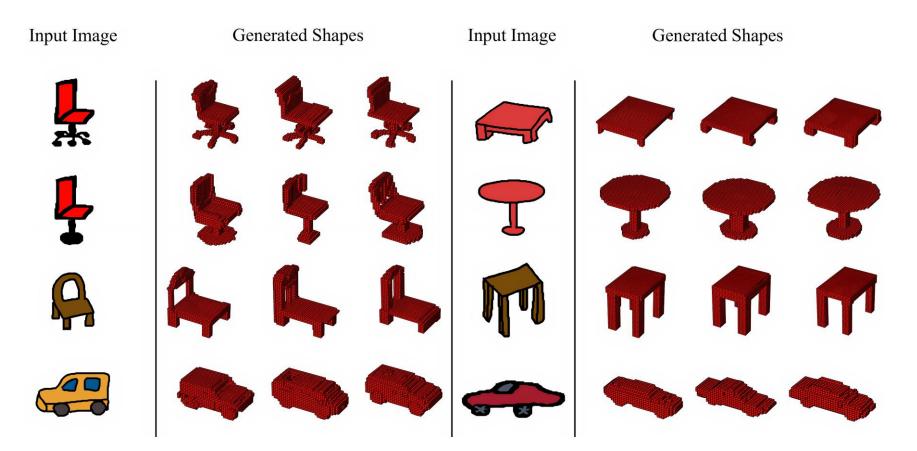
INTERPOLATIONS



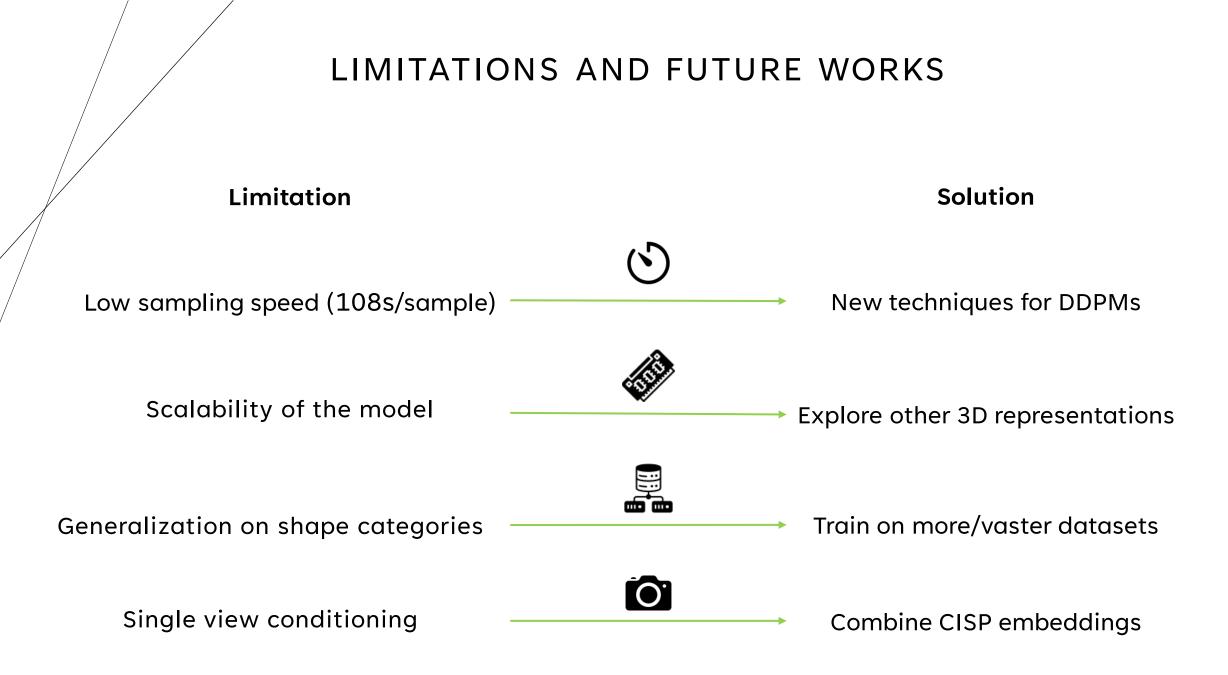
Examples of intra- and inter-class interpolations. CISP embeddings are interpolated by spherical linear interpolation (Slerp) with a 0.2 step.

41

HAND-DRAWN SHAPES



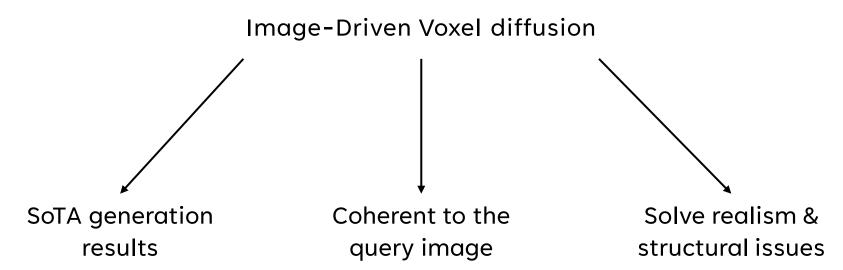
Thanks to CISP embeddings, we can also use handmade drawings of objects as query images. IC3D produces relevant and high-quality shapes even in this case.

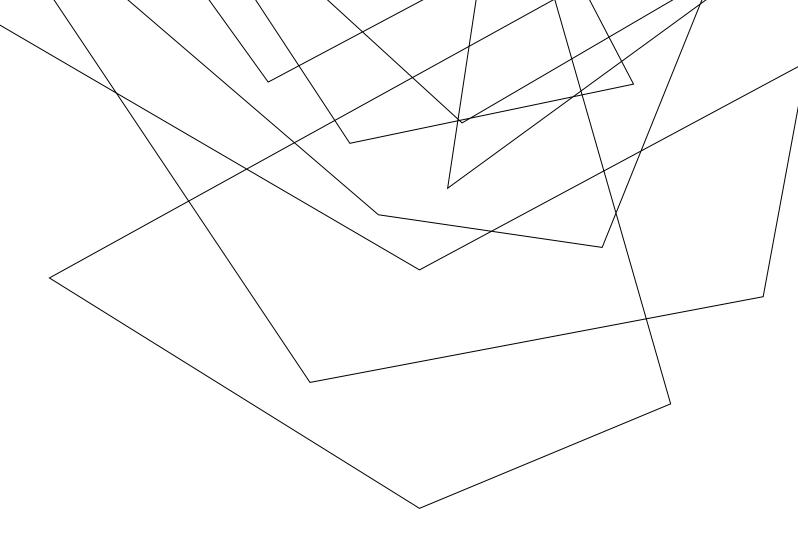


CONCLUSIONS

CISP Joint image-shape embeddings

IC3D





SINGLE-VIEW SHAPE **RECONSTRUCTION VIA IMAGE-CONDITIONED 3D DIFFUSION**

Cristian Sbrolli

Advisor: Prof. Matteo Matteucci

Co-Advisor: Paolo Cudrano, Matteo Frosi

