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Introduction to the Research Project:

Problem under study
LR

Relative 5-year survival for invasive epithelial ovarian cancer
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= They become progressively
resistant to the treatment

Sansone Sara POLITECNICO MILANO 1863




Introduction to the Research Project:

Why is it relevant?
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Treatment:

Surgery and cytoreduction followed by platinum-based chemotherapy

Sansone Sara POLITECNICO MILANO 1863



Introduction to the Research Project:

Why is it relevant?
LR

Treatment:
Surgery and cytoreduction followed by platinum-based chemotherapy

Patient’s relapse timing:

Platinum-refractory

Therapy

- < 1 month

T
~20%

Sansone Sara POLITECNICO MILANO 1863




Introduction to the Research Project:

Why is it relevant?
LR

Treatment:

Surgery and cytoreduction followed by platinum-based chemotherapy

Patient’s relapse timing:

Platinum-refractory

Platinum-resistant

Therapy
- < 1 month 1-6 months
i * [l ‘ i
~ 20 % ~ 80 %

Sansone Sara POLITECNICO MILANO 1863



Introduction to the Research Project:

Why is it relevant?
LR

Treatment:

Surgery and cytoreduction followed by platinum-based chemotherapy

Patient’s relapse timing:

Platinum-refractory

Platinum-resistant

Therapy Platinum-sensitive
- <1 month 1-6 months > 6 months
i * [l ‘ i
~20% ~ 80 %

Sansone Sara POLITECNICO MILANO 1863



Introduction to the Research Project:

Why is it relevant?
LR

Treatment:

Surgery and cytoreduction followed by platinum-based chemotherapy

Patient’s relapse timing:

_ Sensitive
Platinum-refractory short
4
Platinum-resistant <32 months
Therapy Platinum-sensitive
- < 1 month 1-6 months > 6 months
[ | | J
T T

~20% ~ 80 %

Sansone Sara POLITECNICO MILANO 1863



Introduction to the Research Project:

Why is it relevant?
LR

Treatment:

Surgery and cytoreduction followed by platinum-based chemotherapy

Patient’s relapse timing:

Sensitive Sensitive
short long

A 7'
<32 months >332 months

Platinum-refractory

Platinum-resistant

Therapy Platinum-sensitive
- <1 month 1-6 months > 6 months
i T [l ' i
~20% ~ 80 %

Sansone Sara POLITECNICO MILANO 1863



Introduction to the Research Project:

Aim of the work
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Exploit computational methods to identify a molecular signature that
allows to:
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Introduction to the Research Project:

Aim of the work
OV PR

Exploit computational methods to identify a molecular signature that
allows to:

* Predict the response to therapy (resistant / sensitive)

e Understand the cause of chemoresistance
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Introduction to the Research Project:

Aim of the work
e a A nTm

molecular signature

Sansone Sara POLITECNICO MILANO 1863



Introduction to the Research Project:

Aim of the work
e a A nTm

molecular signature

base pairs
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Data Description:

Genomic data used
L LD P TP

Copy Number Alteration (CNA) Gene expression
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Data Description:

Genomic data used
L LD P TP
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Data Description:

Genomic data used
L LD P TP

Copy Number Alteration (CNA) A genomic region has normally two copies

in the DNA, originating from the zygote
formation
CNAs alter this occurrence in two different
ways: amplification and deletion
Deletion Amplification
pr———— e —— . .
The main focus is on CNA data:
= Early events
=  May be a signal of the resistance to

chemotherapy

One copy of “C* Three copies of "C"
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Data Description:

Genomic data used
L LD P TP

Copy Number Alteration (CNA) Gene expression

Chromosome

DNA (Deoxyribonucleic Acid)
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Data Description:

Genomic data used
L LD P TP

Gene expression

* Agene is the basic physical and functional
unit of heredity

* The information encoded in the genes are
used in the synthesis of functional
products, such as proteins

Chromosome

* The process by which it is done is called
gene expression

DNA (Deoxyribonucleic Acid)

* We are mostly interested in protein coding
genes:

= They are related to many cellular
functions and biological activities
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Data Description:

Genomic data used
L LD P TP

Copy Number Alteration (CNA)

MiRNA expression
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Data Description:

Genomic data used
L LD P TP

Copy Number Alteration (CNA)

MiRNA expression

* microRNAs (miRNAs) are small non-coding
RNA molecules

They target multiple genes and can either
up-regulate or down-regulate their

expression

* They have a causal role in tumorigenesis
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Data Description:

Genomic data used
L LD P TP

Copy Number Alteration (CNA)
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Data Description:

Genomic data used
L LD P TP

* DNA methylation is an epigenetic process
by which methyl groups are added to the

DNA molecule A (
* It can change the the function of each ‘x\C\
portion of the genome, by making it more ‘DNA methylation =

or less accessible

Chromosome Chromatin

Nucleosome

Histone Modification DNA Methylation
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Data Description:

Datasets
LCCEEECEEEEEE PR EEEAEEEEEE PR EEE PR EEEE P EEEA T EEEE P

TCGA

THE CANCER GENOME ATLAS B
National Cancer Institute
National Human Genome Research Institute
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Data Description:

Datasets
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Data Description:

Datasets
LCCEEECEEEEEE PR EEEAEEEEEE PR EEE PR EEEE P EEEA T EEEE P

TCGA

THE CANCER GENOME ATLAS 3
National Cancer Institute
National Human Genome Research Institute

GENOMETRIC QUERY LANGUAGE

Obtain for each patient data about:
= CNA = (Gene expression

= miRNA = DNA methylation
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Data Description:

Datasets
L
* CNA
patient chrom start stop num_mark seg_mean
RO_TCGA-13-0720 chri 3301764 16104539 7169 0.2480
RO_TCGA-13-0720 chri 16108231 16162328 29 0.7084

Segmented mean: the log, ratio of observed intensity of alteration over
reference intensity
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Data Description:

Datasets
L
* CNA
patient chrom start stop num_mark seg_mean
RO_TCGA-13-0720 chri 3301764 16104539 7169 0.2480
RO_TCGA-13-0720 chri 16108231 16162328 29 0.7084

Segmented mean: the log, ratio of observed intensity of alteration over
reference intensity

* Gene expression

patient chrom start stop gene_symbol fpkm
RO_TCGA-13-0720 chri 11868 14409 DDX11L1 0.000000
RO_TCGA-13-0720 chr1 14403 29570 WASH7P 23648.321087

FPKM (Fragments Per Kilobase Million): the value of expression,
normalized for sequencing depth and gene length
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Data Description:

Datasets
LCCEEECEEEEEE PR EEEAEEEEEE PR EEE PR EEEE P EEEA T EEEE P
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MiRNA expression

patient chrom start stop mirna_id rpm

RO_TCGA-13-0720 chrl 17368 17436 hsa-mir-6859-1 0.000000
RO_TCGA-13-0720 chri 30365 30503 hsa-mir-1302-2 0.000000

RPM (Reads Per Million): the value of expression, normalized for
sequencing depth




Data Description:

Datasets
LCCEEECEEEEEE PR EEEAEEEEEE PR EEE PR EEEE P EEEA T EEEE P

* miRNA expression

patient chrom start stop mirna_id rpm

RO_TCGA-13-0720 chrl 17368 17436 hsa-mir-6859-1 0.000000
RO_TCGA-13-0720 chri 30365 30503 hsa-mir-1302-2 0.000000

RPM (Reads Per Million): the value of expression, normalized for
sequencing depth

* DNA methylation

patient chrom start stop gene_symbol beta_value

RO_TCGA-13-0720 chr1 924804 924806 SAMD11 0.009892
RO_TCGA-13-0720 chr1 925936 925938 SAMD11 0.007828

Beta value: the ratio of intensities between methylated and
unmethylated alleles
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First approach to solve the problem:

Use only CNA data




Steps performed

1. Data preprocessing
2. Feature selection

3. Methods: Classification vs Survival Regression
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Data Preprocessing:

CNA profiles
LR

Problem @ Solution C*

A genome wide analysis is needed
to identify regions with different
CNA between the classes
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Problem @ Solution Q
A genome wide analysis is needed | * We create, for each patient, two
to identify regions with different CNA profiles (for amplification
CNA between the classes alteration and for deletion
alteration)
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Data Preprocessing:

CNA profiles
LR
Problem @ Solution Q
A genome wide analysis is needed | * We create, for each patient, two
to identify regions with different CNA profiles (for amplification
CNA between the classes alteration and for deletion
alteration)

* The genome contains 3 billions of
base pairs
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Data Preprocessing:

CNA profiles
LR
Problem @ Solution Q
A genome wide analysis is needed | * We create, for each patient, two
to identify regions with different CNA profiles (for amplification
CNA between the classes alteration and for deletion
alteration)

* The genome contains 3 billions of | * We use bins of size n, i.e., we
base pairs consider one position as the

average of the values of n positions
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Data Preprocessing:

CNA profiles
LR

Amplification profiles, resolution of 10Kb

— Resistant
—— Sensitive_short
06/ —— Sensitive_long
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Data Preprocessing:

CNA profiles
LR

Deletion profiles, resolution of 10Kb

0.7/ —— Resistant
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Steps performed

1. Data preprocessing
2. Feature selection

3. Methods: Classification vs Survival Regression
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Feature Selection:

CNA data
OV PR

We tried two different approaches to extract relevant CNA regions:
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Feature Selection:

CNA data
OV PR

We tried two different approaches to extract relevant CNA regions:

1. Use GISTIC2.0, the state-of-the-art for CNA analysis

GISTIC2.0 is a module able to find regions of the genome that are
significantly amplified or deleted in a certain population
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Feature Selection:

CNA data
OV PR

We tried two different approaches to extract relevant CNA regions:

1. Use GISTIC2.0, the state-of-the-art for CNA analysis

GISTIC2.0 is a module able to find regions of the genome that are
significantly amplified or deleted in a certain population

2. Compare CNA profiles of patients of different classes and compute the
p-values for the regions using statistical tests:

e Search for the more suitable test

* Implementation of a permutation test

 Use two different thresholds to select the p-values: 0.05, 0.005
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Steps performed

1. Data preprocessing
2. Feature selection

3. Methods: Classification vs Survival Regression
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Methods:

Classification with CNA data
LD

 We tried different classification

algorithms

1. Choose the most suitable -

classification algorithm * The ones giving the best

performances were:

2. Choose the best set of features * KNN, when using features from

GISTIC2.0
3. Evaluate the model = SVM, in all the other cases
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Methods:

Classification with CNA data
LD

* Take the set of features obtained
with the different features selection
1. Choose the most suitable methods

classification algorithm
 Compute for each of them precision,

recall, accuracy and AUC through a
2. Choose the best set of features — 10-fold cross validation

* Select the features giving the best
3. Evaluate the model performances
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Methods:

Classification with CNA data
LD

* We did not achieve good results

1. Choose the most suitable * The best performances obtained for
classification algorithm Resistant vs Sensitive were:

= Average precision: 0.51 £0.10

2. Choose the best set of features
= Average recall: 0.61 £ 0.19

3. Evaluate the model - = Average accuracy: 0.68 + 0.07

= Average AUC: 0.72 £0.11
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Methods:

Survival Regression
LR

* Progression Free Survival (PFS):

FFS|Kaplan Meier Estimate the interval from th<=j date of surgery to
. the date of progression, date of
- Resistant
—— Sensitive Long recurrence, or date of last known
—— Sensitive Short contact
0 20 a0 60 80 100

timeline
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Methods:

Survival Regression
LR

* Progression Free Survival (PFS):

PES Kaplan Meier Estimate the interval from the date of surgery to

" restont the date of progression, date of
—— Sensitive Long recurrence, or date of last known
—— Sensitive Short contact

~ 68 % . .

- * Censored data: patients who did not
have the relapse up to the last contact
~ 8%
0 20 a0 60 80 100

timeline
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Methods:

Survival Regression

PFS Kaplan Meier Estimate

- Resistant
- Sensitive Long
- Sensitive Short

0 20 40 60 80 100
timeline

Sansone Sara

Progression Free Survival (PFS):

the interval from the date of surgery to
the date of progression, date of
recurrence, or date of last known
contact

Censored data: patients who did not
have the relapse up to the last contact

How to predict PFS?

= Cox Regression Model
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Methods:

Survival Regression
LR

* Progression Free Survival (PFS):
the interval from the date of surgery to
. the date of progression, date of
- Resistant

—— Sensitive Long recurrence, or date of last known
- Sensitive Short contact

PFS Kaplan Meier Estimate

* Censored data: patients who did not
have the relapse up to the last contact

* How to predict PFS?

= Cox Regression Model

0 20 40 60 80 100

timeline * What features did we use?

= The ones obtained through the
permutation test
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Results:

Survival Regression
LR

 We were not able to correctly predict the PFS times of the patients

* The best concordance index we got was equal to 0.58

Resistant Class Sensitive Short Class

10 1
0.8 1
0.6 1

04

Probability of survival

0.2 1

0.0 1

0 20 P &0 8 100
Progression Free Survival

Progression Free Survival
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Second approach to solve the problem:

Use four types of genomic data




Steps performed

1. Feature selection for the other three types of data

2. Classification
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Feature Selection:

Gene expression, miRNA and DNA methylation data
LR

 Compute the p-values, for the different genomic elements, using Mann-
Whitney test (for each binary comparison)
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Feature Selection:

Gene expression, miRNA and DNA methylation data
LR

 Compute the p-values, for the different genomic elements, using Mann-
Whitney test (for each binary comparison)

* Try different thresholds for the p-values: 0.05, 0.005, 0.0005
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Feature Selection:

Gene expression, miRNA and DNA methylation data
LR

 Compute the p-values, for the different genomic elements, using Mann-
Whitney test (for each binary comparison)

* Try different thresholds for the p-values: 0.05, 0.005, 0.0005

* Try different correction for multiple testing:

= Bonferroni correction: « Standard version:
p—valuecorrected = Pvalue ° n_tests n_tests = total
number of tests
"  Benjamini-Hochberg correction: « Mild version:
l _ n_tests n_tests = number
p_valué orrected = Pvalues ranking of patients of the
- two classes
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Steps performed

1. Feature selection for the other three types of data

2. Classification
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Methods:

Classification with four types of genomic data
LD

Patient_id Amp:chr1:2000-2999 Del:chr4:37852-38402

R_00000

R_00001

R_00002

Patient_id | ENSG00000223972.5 ENSG00000227232.5

R_00000

R_00001

R_00002

Patient_id hsa-mir-6859-1 hsa-mir-1302-2

R_00000

R_00001

R_00002

Patient_id SAMD11 GRID2

R_00000

R_00001

R_00002

Select the best features for
each type of genomic data
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Methods:

Classification with four types of genomic data

Patient_id

Amp:chr1:2000-2999

Del:chr4:37852-38402

R_00000

R_00001

R_00002

Patient_id

ENSG00000223972.5

ENSG00000227232.5

R_00000

R_00001

R_00002

Patient_id

hsa-mir-6859-1

hsa-mir-1302-2

R_00000

R_00001

R_00002

Patient_id

SAMD11

GRID2

R_00000

R_00001

R_00002

Patient_id hr1:2000-

- ENSG00000223972.5

ENSG00000227232.5

hsa-mir-6859-1

hsa-mir-1302-2

SAMD11 GRID2

R_00000

R_00001

R_00002

Merge the four
datasets

Select the best features for
each type of genomic data

==) Normalize =) Classify

using SVM
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Best computational results:

ROC curves for Resistant vs Sensitive
CLCCEE PP PP PP P PP FEE P PP

Merging of all genomic data

10 1

0.8 |

0.6 1 ’

True Positive Rate
N

041 7’

0.2 1 ’

0.0 1 ’

ROC fold 0 (AUC = 0.99)
ROC fold 1 (AUC = 0.73)
ROC fold 2 (AUC = 0.81)
ROC fold 3 (AUC = 0.90)
ROC fold 4 (AUC = 0.82)
ROC fold 5 (AUC = 0.73)
ROC fold 6 (AUC = 0.86)
ROC fold 7 (AUC = 0.86)
ROC fold 8 (AUC = 0.68)
ROC fold 9 (AUC = 0.83)

Chance
Mean ROC (AUC = 0.82 = 0.09)

+ 1 std. dev.

00 02 04 06
False Positive Rate

Sansone Sara

08

CNA

Gene expression

e osve Rate
2 z

True Positive Rate:

wwwwwwwwwwwww

ROC fold 0 (AUC = 0.71)
ROC fold 1 (AUC = 0.83)

-~ Chance
— Mean ROC (AUC = 080+ 011)
=15t dev.

o8 06
False Positive Rate:
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Best computational results:

For Resistant vs Sensitive

Type of data N features Precision Recall Accuracy AUC

CNA 225 0.51+0.10 0.61+£0.19 0.68=£0.07 0.72+0.11
Gene expression 20 071=020 037=x=010 0.77=0.10 0.79=x=0.11
miRNA 11 077030 037+£020 0.75£0.10 0.72£0.15
Methylation 65 0.79+030 035+£0.10 0.78+£0.10 0.78=£0.09
Merge 311 0.68£0.18 0.74+£0.11 0.80+0.10 0.82+0.09

* Asingle genomic data is not enough to distinguish the two main
classes: resistant and sensitive

* Four genomic signals together allow to achieve good performances =
the recall is significantly better
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Best computational results:

ROC curves for the other binary comparisons
LR

All genomic data

False Positive Rate

Resistant vs Sensitive Long

Sansone Sara

All genomic data

10 { —~ 10 -
4
4 4
J ’ [ g
7’ 7’
7/ 7
4 4
7/ 4
4 | o
4 4
7/ 4
/’ /'
038 , 038 1 /
4 r_' 4
/, //
7 7
7/ 'J 7/
7 7
4 7/
4 4
4 7
' 4
7 4
06 _ 06 ~
X p -6 1 ’
< ’ < 7’
2 /”’ 2 ’
: v~ s v~
& ’ b ,
L7 ’ v /
] ’ ] 4
= e = e
04 7’ 0.4 1 s
I’ /,
L, ROC fold 0 (AUC = 0.89) / ROC fold 0 (AUC = 0.88)
L, ROC fold 1 (AUC = 1.00) ,/ ROC fold 1 (AUC = 0.65)
7 ROC fold 2 (AUC = 0.94) 7 ROC fold 2 (AUC = 0.70)
L, ROC fold 3 (AUC = 1.00) L, ROC fold 3 (AUC = 0.80)
S ROC fold 4 (AUC = 0.89) 7 ROC fold 4 (AUC = 0.95)
02 e ROC fold 5 (AUC = 0.83) 02 1 7 ROC fold 5 (AUC = 0.78)
L ROC fold 6 (AUC = 0.92) L’ ROC fold 6 (AUC = 0.85)
L’ ROC fold 7 (AUC = 0.90) ’ ROC fold 7 (AUC = 1.00)
7 ROC fold 8 (AUC = 1.00) ROC fold 8 (AUC = 0.82)
ROC fold 9 (AUC = 1.00) ROC fold 9 (AUC = 0.86)
== Chance —=— Chance
0ol b —— Mean ROC (AUC = 0.93 = 0.06) ol ¥ —— Mean ROC (AUC = 0.83 = 0.10)
i +1 std. dev. : + 1 std. dev.
00 02 04 06 08 10 00 02 04 06 08 10

False Positive Rate

Resistant vs Sensitive Short
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Best computational results:

Consideration
L LD P TP

 The method is satisfying: it allows to achieve good results for all the
performance measures, i.e., precision, recall, accuracy and AUC of the
ROC curves

* Innovation: use four different genomic data-types and be able to classify
the patients with good performances
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Biological Results:

Relevant features for Resistant vs Sensitive
e a A nTm

From 137 CNA
amplification regions

|

183 genes 24 related to

—

Protein coding HGS-OC
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Biological Results:

Relevant features for Resistant vs Sensitive
e a A nTm

From 137 CNA
amplification regions

|

183 genes 24 related to

—
Protein coding HGS-0OC — 8 fordrug

resistance

8 for the biology

8 for the etiology
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Biological Results:

Relevant features for Resistant vs Sensitive
e a A nTm

2 activators of the

Erom 137 CNA Notch pathway (DLL1

amplification regions 8 for the biology e CTBP2)
l 5 related to resistance
183 24 related to to platinum-based
genes
Protein coding HGS-0OC - 8 fordrug ——— chemotherapy (CAS9,

ELAV1, HTRA1L,

resistance
RNASET2, URI1)

1 related to the
response to
chemotherapy (BID)

8 for the etiology
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Biological Results:

Relevant features for Resistant vs Sensitive
e a A nTm

 We further analyzed the 8 genes related to drug-resistance
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Biological Results:

Relevant features for Resistant vs Sensitive
e a A nTm

 We further analyzed the 8 genes related to drug-resistance

 For5(DLL1, CTBP2, BID, CA9, HtrA1) of them, resistant and sensitive
have:

= Different CNA values distribution (at the time of diagnosis)

= Not different Gene expression distribution (at the time of
diagnosis)

= Different Gene expression distribution (after therapy)
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Biological Results:

Relevant features for Resistant vs Sensitive
e a A nTm

 We further analyzed the 8 genes related to drug-resistance

 For5(DLL1, CTBP2, BID, CA9, HtrA1) of them, resistant and sensitive
have:

= Different CNA values distribution (at the time of diagnosis)

= Not different Gene expression distribution (at the time of
diagnosis)

= Different Gene expression distribution (after therapy)

N.B.: The last information is known from literature and need experimental
confirmation
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Conclusions:

Main contributions
L LD P TP

Exploiting computational methods we identified a molecular signature that
allows to:
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Conclusions:
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Exploiting computational methods we identified a molecular signature that
allows to:

* Predict the response to therapy (resistant / sensitive)

e Understand the cause of chemoresistance
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Conclusions:

Main contributions
L LD P TP

Exploiting computational methods we identified a molecular signature that
allows to:

* Predict the response to therapy (resistant / sensitive)
 Understand the cause of chemoresistance

The goal of the project is accomplished
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Conclusions:

Main contributions
L LD P TP

* We built a classifier with satisfying performances integrating four types
of genomic data

Sansone Sara POLITECNICO MILANO 1863



Conclusions:

Main contributions
L LD P TP

* We built a classifier with satisfying performances integrating four types
of genomic data

e With our model, we discovered 137 CNA regions of amplification (less
then 1% of the genome) as discriminatory for the two main classes,
resistant and sensitive
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Conclusions:

Main contributions
L LD P TP

* We built a classifier with satisfying performances integrating four types
of genomic data

e With our model, we discovered 137 CNA regions of amplification (less
then 1% of the genome) as discriminatory for the two main classes,
resistant and sensitive

* These regions contain 24 genes related to HGS-OC, 8 of which are
directly connected to chemoresistance
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Conclusions:

Main contributions
L LD P TP

* We built a classifier with satisfying performances integrating four types
of genomic data

e With our model, we discovered 137 CNA regions of amplification (less
then 1% of the genome) as discriminatory for the two main classes,
resistant and sensitive

* These regions contain 24 genes related to HGS-OC, 8 of which are
directly connected to chemoresistance

 Two of the 8 genes belongs to the Notch Signaling Pathway
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Conclusions:

Future Works
OCCEEEEEEE PP PP PP PP

* The results obtained lead to an interesting theory:

Enhanced drug-resistance could be a direct consequence of the
activation of the pathway, due to the alteration of the expression of the
identified genes, which in turn occurs as a consequence of their greater
replication at diagnosis within these genomic segments.
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* The results obtained lead to an interesting theory:

Enhanced drug-resistance could be a direct consequence of the
activation of the pathway, due to the alteration of the expression of the
identified genes, which in turn occurs as a consequence of their greater
replication at diagnosis within these genomic segments.

* Interesting therapeutic options for resistant patients may be developed
by targeting the Notch Signaling pathway
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Conclusions:

Future Works
OCCEEEEEEE PP PP PP PP

* The results obtained lead to an interesting theory:

Enhanced drug-resistance could be a direct consequence of the
activation of the pathway, due to the alteration of the expression of the
identified genes, which in turn occurs as a consequence of their greater
replication at diagnosis within these genomic segments.

* Interesting therapeutic options for resistant patients may be developed
by targeting the Notch Signaling pathway

* An efficient test for copy number alterations at diagnosis could be
performed using ad-hoc probes on a small set of genes
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