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1. Introduction to the problem

In recent years, deep learning models outperformed state-of-the-art techniques in many machine learning tasks,
bringing ground-shaking advances in research and industrial environments. Deep learning models involve
powerful function approximators to be trained over huge sets of data. As an example, the review [21] collects
deep learning advances in common computer vision tasks, such as motion tracking, action recognition, human
pose estimation, and semantic segmentation.

Neural networks are a computational tool that computer scientists know since the middle of the last century.
They implement a "threshold logic", loosely inspired by biological neurons of the human brain. Despite their
early invention, deep learning based on neural networks became popular only since 2012, when AlexNet [12],
a deep convolutional neural network, won several computer vision competitions. This advance was due to the
great improvements in GPU design, which sped significantly the training time of the networks. Deep learning
techniques are heavily used today in research and industry because they build data-driven features from data.
Before deep learning, features were hand-crafted by domain experts. This approach was applicable up to a
satisfactory rate of success only in some areas and not feasible in others. The ability of building meaningful
features in an automated way is extremely powerful, as we do not need to rely on domain knowledge and we can
discover meaningful patterns without any human supervision.

Even if the literature is overflowing with incredibly successful applications of deep learning architectures
based on neural networks, they come with some structural drawbacks. The first one is explainability [7]: it is
very difficult to delve into their complex structure and reconstruct the reasoning, in a human-understandable
sense, that brings the network to a specific decision. Explainability is mandatory in large-scale, safety-critical
and mission-critical applications, as requirements impose hard constraints on model verifiability. The second
drawback is the size of training set necessary for the learning procedure, called backpropagation. Since deep
neural networks have a huge set of parameters, their tuning requires a high cost in terms of data, computational
time, and memory.

Recently, many researchers started experimenting with embedding algorithmic priors directly in the neural
network structure. Their aim is to insert algorithmic modules with a predefined behavior in the architecture while
maintaining the end-to-end training procedure. This approach increases explainability, as algorithmic priors force
the network to adapt to the algorithms’ interfaces. It also helps training, because it reduces the variance of the
model by lowering the number of tunable parameters. Finally, it provides a stabler solution during training, being
it theoretically guided. This emerging field is called Structured Learning: algorithms provide structure and neural
networks provide flexibility to learn and adapt from data.

The backpropagation algorithm, in order to train a structured system end-to-end, requires all the architecture
components to be differentiable. End-to-end training is a desirable property, as it requires a single input-output
dataset. A non-end-to-end training process would require separate tuning of each architectural component. This
approach may be costly or not feasible in general. So, in order to embed an algorithm in a deep neural architecture
and maintain end-to-end learning, it must be differentiable. This property can be achieved by using automatic
differentiation, a technique common in fluid dynamics or engineering design optimization, but still underused
in the machine learning area. Many experiments show the potential of Structured Learning in deep learning
architectures and compiler experts are moving towards providing automatic differentiation as a default feature of
programming languages.
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2. Main related works

Algorithmic prior embedding is becoming an important tool in deep learning research. It is commonly used in
computer vision with differentiable renderers for 3D reconstruction [4, 11, 13, 14, 16, 19, 23]. Some other fields in
which it started to spread include physics simulations with differentiable physics engines [5, 18], automation and
control [1, 10], and logical reasoning [22, 24].

The algorithmic embedding is often based on automatic differentiation (AD) [3, 15]. This technique is at the
center of the differentiable programming research (∂P) [9, 20], which is aimed at providing differentiation as a
first-class feature of programming languages. However, AD is not the only attempt of differentiating soundly
general algorithms. In [17], the authors propose a differentiation model that takes into account the control flow of
the program and not only the execution trace, as AD-based techniques do.

We can classify Structured Learning according to two dimensions: the first is the area of the task for which it
is applied and the second is the architecture type. There are two main architectures, Structured Autoencoders
and Structured Pipelines. The first is based on classical autoencoders, with an algorithmic decoder instead of
a neural one. It is well suited for inverse problems, such as parameter estimation in physics or rendering in
computer vision. The second is more general and consists of the composition of several modules, both neural and
algorithmic. It is usually trained in a supervised way and has proven to be able to handle complex tasks, like
simulated robotic motion and solution of visual Sudoku, all by end-to-end training.

The experiments that involve Structured architectures show improvements in data efficiency and performance
with respect to unstructured deep neural networks. The main issue identified is the increase in computational
complexity during training.

3. Research plan

3.1. Goal

The advantages provided by Structured Learning in explainability, data efficiency and solution structure with
respect to deep unstructured networks are pushing research towards algorithmic prior integration. However,
the study of algorithmic differentiability with non-AD techniques is in a very early stage and we did not find
in the literature any attempt at integrating a Structured Learning architecture in a complex, real, environment.
Our contribution is to explore the strengths and boundaries of Structured Learning from a technological aspect
and implement a Structured Pipeline for a robotic agent as case-study. The challenge is to show the feasibility of
integrating the model-based approach in a model-free setting. In detail, the research activity will start from the
study of the differentiation properties that best suit our application, then we will choose an architecture for the
system. We will implement and test it in a simulated environment and possibly integrate it in a real situation.
We want to provide results that compare our architecture with respect to the current standards, focusing on the
performance, explainability and data efficiency aspects. Lastly, we will discuss the current technological limits of
Structured Learning integration.

The task we want to takle is autonomous navigation of a robotic agent. This task is particularly interesting
for several reasons. First, research has produced a huge corpus of algorithmic techniques for solving tasks such
as vision, perception, state estimation, obstacle detection, planning, control, multi-agent coordination and many
more. The goal of Structured Learning is to integrate these techniques into deep end-to-end architectures, in
order to bridge model-based and model-free design. Autonomous navigation is also relevant to many industrial
applications. Autonomous cars, as a flourishing case-study today, aim at revolutionizing the way in which we
perceive transportation, by granting efficient and secure performance. Since 2004 DARPA Grand challenge, major
automotive industries invested billions of dollars in research and technological development around autonomous
driving. However, autonomous driving is a safety-critical application and the integration of deep learning
techniques is still open to debate. The potential contribution of Structured Learning is to alleviate both the
explainability issues in fault scenarios and the data hunger of current architectures.
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3.2. Research activities

1. Differentiation inquiry Algorithm differentiation is at the core of Structured Learning. The first step of our
research is to analyze and compare AD-based techniques with non-AD-based techniques for algorithmic
differentiation. AD-based techniques have a strong technological support, but may not provide a correct
derivative at boundary conditions for control flow. Non-AD-based techniques aim at solving this issue, but
they may lack generality, a well-established corpus of studies or technological support. The analysis will
mainly focus on algorithms for robotic motion that we can potentially implement in the architecture.

2. Architecture design It is difficult to select a standard reference architecture for autonomous navigation. Au-
tonomous driving surveys [2, 8], for example, suggest two macro modules, Perception System and Decision-
Making System, that are further divided into many submodules. Since the main focus of this work is to further
study the applicability of Structured Learning and not to develop a full software stack for autonomous
driving, we will focus on a simpler architecture of four modules, Vision, State estimation, Planning and Control
(Figure a). This architecture captures the main aspects of navigation: detect and analyze the surroundings,
provide an estimation of the current state of the robot with respect to the environment, plan towards a
predefined goal and provide to the actuators the necessary inputs for a correct motion.

3. Implementation and training Given the differentiation and architectural requirements, we must choose the
best suited machine learning framework and implement the system. Then, we must gather the training
data from the available datasets or collect it ourselves and train the architecture. The feedback with the
architecture design activity is very important. Architectural choices may affect the framework selection, but
the features provided by the available framework may limit the options in the previous stage.

4. Testing We test the trained system in a simulated environment e.g. CARLA Simulator [6] and compare the
performance with other frameworks from the state-of-the-art of autonomous navigation. Our ultimate goal,
however, is to integrate the system in a real environment. As far as we know, experiments in a real-life
scenario involving Structured Learning techniques have never been conducted. It is interesting to test the
resilience of the system to noise and non-idealities of the real world.

5. Conclusions We provide a report of the experiments we’ve conducted, highlighting the strengths and weak-
nesses of our architecture. At this point, we can indicate the direction of future research that need to
be investigated further. This step is interleaved with the testing activity, and coincides to the final paper
redaction. We expect to conclude this work by September 2020 (Figure b).

(a) Simplified architecture of an autonomous navigation sys-
tem, inspired by [10]
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(b) Gantt chart of the research stages
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