Research Project Proposal: Structured Learning

Alberto Archetti

alberto1.archetti@mail.polimi.it
Computer Science and Engineering

Deep Learning Structured Learning Autonomous Navigation

Deep Learning Structured Learning Autonomous Navigation

Neural Networks, Backpropagation Deep Learning, drawbacks

Image classification

How can we teach a computer to recognize cats versus dogs?

Neuron

Neural Network

Gradient descent

Deep Learning advances

Deep Learning advances

Semantic segmentation

Image recognition

container ship	motor scooter	leopard
container ship	motor scooter	leopard
lifeboat	go-kart	jaguar
amphibian	moped	cheetah
fireboat	bumper car	snow leopard
		and the second sec

Deep Learning advances

Explainability

Reconstruct the reasoning that brought the network to a decision, in a human-understandable sense

Data efficiency

In order to train a Deep Neural Network we need a huge dataset

Network initialization

How to initialize the network weights?

[Gilpin et al. 2018]

Deep Learning Structured Learning Autonomous Navigation

Automatic Differentiation, Architectures, examples

+ End-to-end training

+ End-to-end training

+ Structured solution

+ End-to-end training+ Explainability

+ Structured solution

+ End-to-end training+ Explainability

+ Structured solution+ Reduce variance

+ End-to-end training+ Explainability

+ Structured solution+ Reduce variance

However, the algorithmic block must be differentiable

Derivatives in Math

Differentiation	Description	
Numerical	Finite difference approximation	y(x)
Pros	Cons	
Easy to implement	Severe approximation errors	

[Baydin et al. 2015, Margossian 2018]

Derivatives in Math

Differentiation	Description			
Symbolic	Automatic manipulation of expressions	$\begin{array}{c} x + y \\ x \cdot y \\ \sin(x) \end{array}$	$ \begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array} $	$\dot{x} + \dot{y}$ $\dot{x} \cdot y + x \cdot \dot{y}$ $\cos(x)$
Pros	Cons	$\cos(x)$	\rightarrow	$-\sin(x)$
Exact solution	Evaluation cost can be exponential		•••	

Derivatives in Math

Differentiation	Description
Automatic	Chain rule through a computational graph
Pros	Cons

[Baydin et al. 2015, Margossian 2018]

Consider $f(x_1, x_2) = \ln(x_1) + 2x_1x_2$ and evaluate $\frac{\partial f}{\partial x_1}\Big|_{(3,4)}$:

Consider $f(x_1, x_2) = \ln(x_1) + 2x_1x_2$ and evaluate $\frac{\partial f}{\partial x_1}\Big|_{(3,4)}$:

Consider $f(x_1, x_2) = \ln(x_1) + 2x_1x_2$ and evaluate $\frac{\partial f}{\partial x_1}\Big|_{(3,4)}$:

- Collection of techniques to evaluate derivatives of numeric functions, expressed as computer programs
- Any code of numerical manipulation eventually results in an evaluation trace over which the chain rule can be applied

Forward mode

- Implemented with dual numbers and operator overloading
- Intuitive
- Convenient with multiple outputs

Evaluate program trace and derivative trace

Backward mode

- Generalized backpropagation
- Requires more memory than Forward mode
- Convenient with multiple inputs

Evaluate derivative trace

Issues

Consider the program

```
Bad-AD(x):
    if (x == 3):
        return 9
    else:
        return x * x
```

What about the derivative at x=3?

It should be 6, but AD returns 0.

Structured Pipeline

Structured Pipeline

[Karkus et al. 2019]

Deep Learning Structured Learning Autonomous Navigation

Advantages of SL integration, our contribution, research plan

Research and industry

- Prior knowledge for object detection, planning, control, multiagent coordination, etc.
- Autonomous driving:
 - Increase explainability
 - Model verifiability
 - Lower data requirements

Our contribution

- Show the potential of Structured Learning in a complex simulation
- Build a Structured Pipeline in order to empirically test the strengths and weaknesses of Structured Learning at scale
- Evaluate explainability in fault scenarios
- Implement the system in a real robotic agent

1. Differentiation inquiry

Analyze and compare AD-based techniques with non-AD-based techniques for algorithmic differentiation

	AD-based techniques	Non-AD-based techniques
Pros	Strong technological support and research results	Less technological support, few research efforts
Cons	Boundary conditions must be handled	Provides a derivative everywhere

2. Architecture design

3. Implementation and training

Deep Learning with PyTorch

Choose a suitable ML framework, given differentiation and architectural requirements

UNREAL

Simulator

HP@CSE, Alberto Archetti

CARLA

4. Testing and Conclusions

- Evaluate performance with respect to the current standards (explainability, accuracy, sample efficiency)
- Write the final paper

References

- GILPIN ET AL. Explaining explanations: An overview of interpretability of machine learning, 2018
- BAYDIN ET AL. Automatic differentiation in machine learning: a survey, 2015
- MARGOSSIAN A review of automatic differentiation and its efficient implementation, 2018
- CHE ET AL. Inverse transport networks, 2018
- KARKUS ET AL. Differentiable algorithm networks for composable robot learning, 2019
- BADUE ET AL. Self-driving cars: A survey, 2019
- GRIGORESCU ET AL. A survey of deep learning techniques for autonomous driving, 2019