

Politecnico di Milano

Computer Science and Engineering

Neural Weighted A*

Learning Graph Costs and Heuristics with Differentiable Anytime A*

Author Alberto Archetti

Advisor Prof. Matteo Matteucci

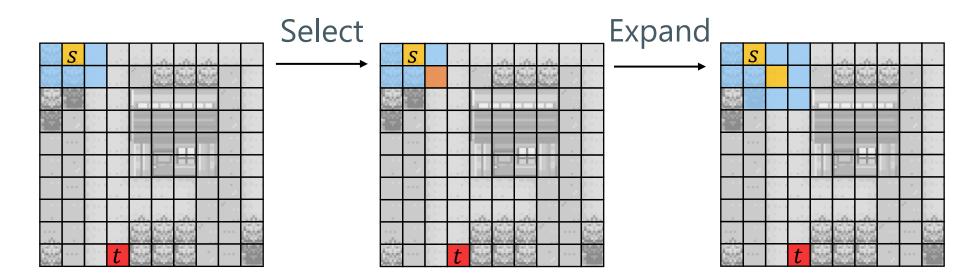
Co-advisor Eng. Marco Cannici

Planning

Find the best sequence of actions to reach a goal.

The A* algorithm

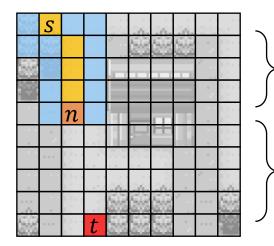
Optimally efficient heuristic-based search algorithm. It searches for a path from the source node to the target node.



Priority measure

A*'s priority measure for node expansion:

F(n) = G(n) + H(n).



G(n): exact cost between s and n.

H(n): estimated cost between n and t.

Admissibility

H(n) is admissible when it never overestimates the cost between n and t.

If H(n) is admissible, A* is optimal and no other algorithm is more efficient.

A* planning cons

The optimal path may take exponential time to be found.

Heuristic design is non-trivial and domain-dependent.

A* planning cons

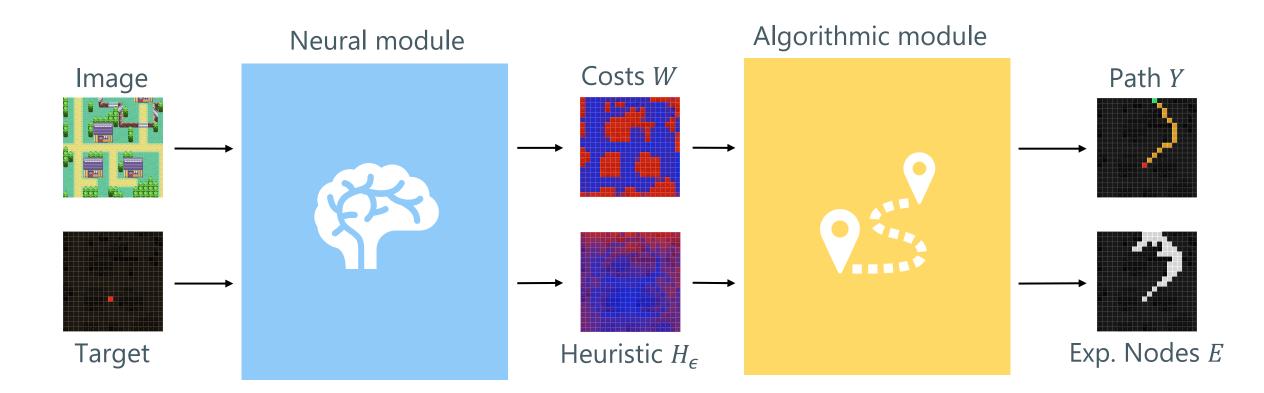
The optimal path may take exponential time to be found.

Tradeoff planning accuracy for planning efficiency.

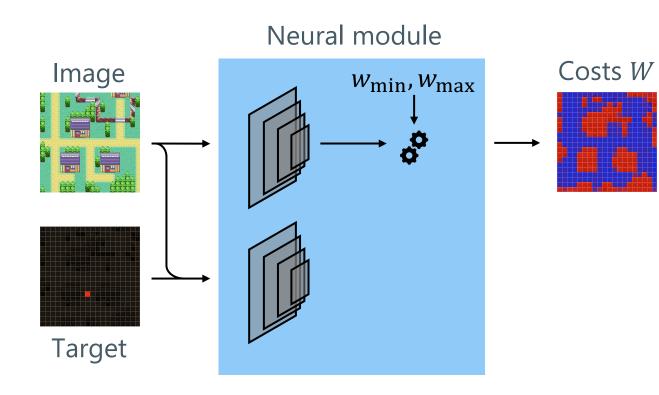
Heuristic design is non-trivial and domain-dependent.

Predict graph labels from maps using deep learning.

Neural Weighted A*'s idea



Neural module

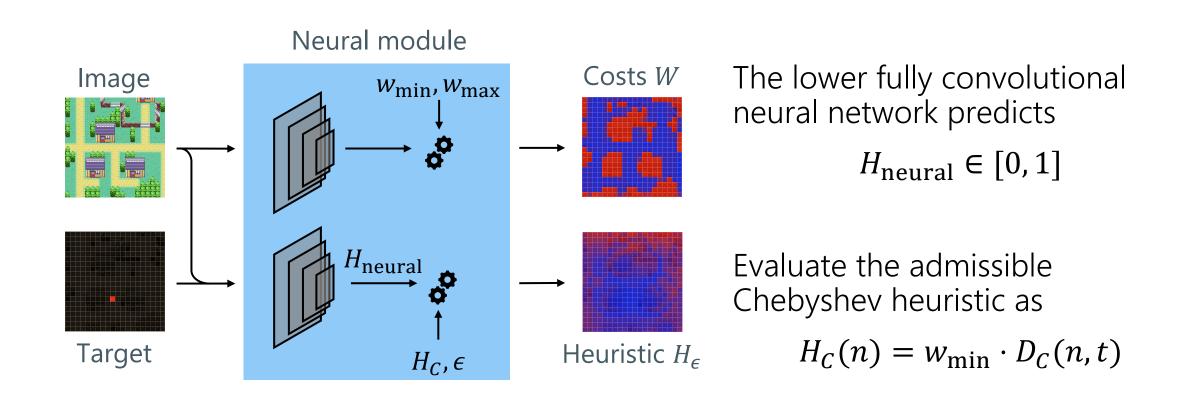


Accuracy-efficiency tradeoff key: relative scale between costs and heuristic.

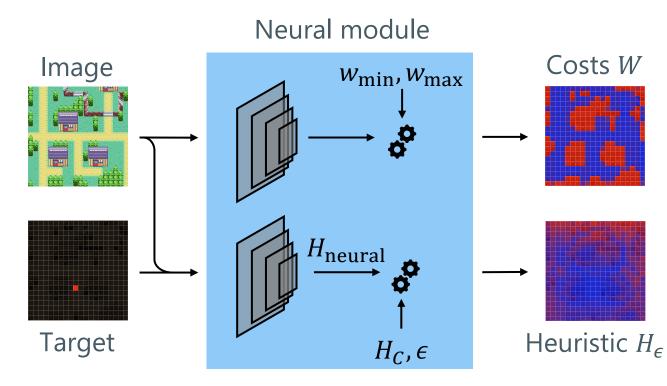
The upper fully convolutional neural network predicts

 $W \in [w_{\min}, w_{\max}]$

Neural module



Neural module

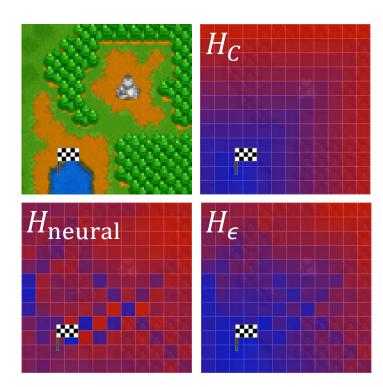


Define the tradeoff parameter ϵ .

Evaluate the final heuristic function as

$$H_{\epsilon} = (1 + \epsilon \cdot H_{\text{neural}}) \cdot H_{C}$$

Heuristic scaling rationale



$$H_{\epsilon} = (1 + \epsilon \cdot H_{\text{neural}}) \cdot H_{C}$$

For $\epsilon = 0$, $H_{\epsilon} = H_{C}$, hence A* is optimal. For $\epsilon > 0$,

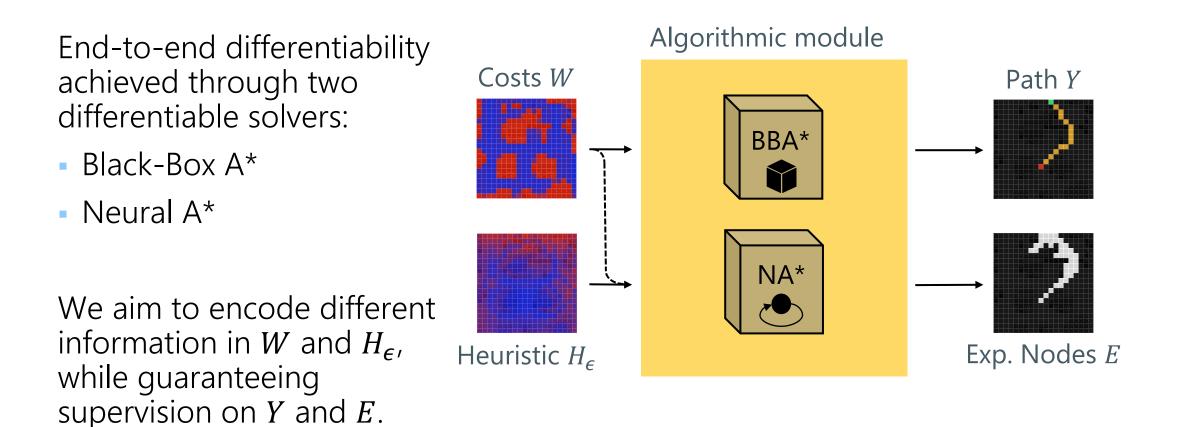
- if $H_{\text{neural}}(n) \approx 0$, then $H_{\epsilon}(n) \approx H_{c}(n)$.
- if $H_{\text{neural}}(n) \approx 1$, then $H_{\epsilon}(n) \approx (1 + \epsilon) \cdot H_{c}(n)$.

The Weighted A* method

Our formula comes from an A* extension, called Weighted A*. It states that given the heuristic function $\alpha \cdot H_c$, then path cost $\leq \alpha \cdot$ optimal path cost.

Since $H_{\epsilon} \leq (1 + \epsilon) \cdot H_{c}$, then, for our architecture, path cost $\leq (1 + \epsilon) \cdot$ optimal path cost.

Structured learning



Training

Supervised learning on ground-truth path \overline{Y} : $\mathcal{L} = \alpha \cdot \mathcal{L}_H(\overline{Y}, Y) + \beta \cdot \mathcal{L}_H(\overline{Y}, E)$ with \mathcal{L}_H being the Hamming loss.

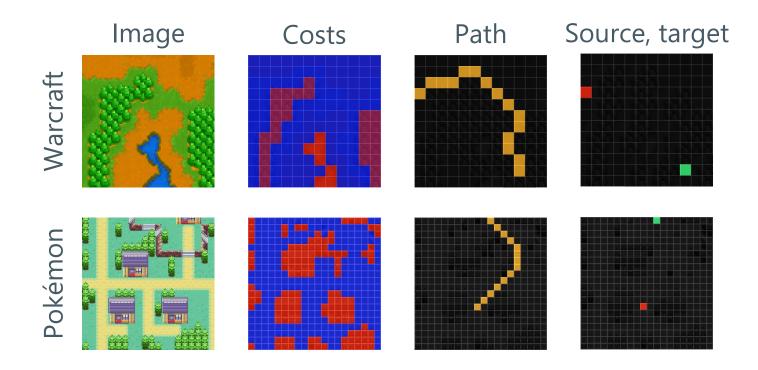
The idea is to force Y and \overline{Y} to be as close as possible while minimizing the nodes in E.

Experiments

To validate our claims, we need three ingredients:

Datasets

Tile-based planar navigation datasets.



[Vlastelica et al., 2020; Archetti et al., 2021]

Metrics

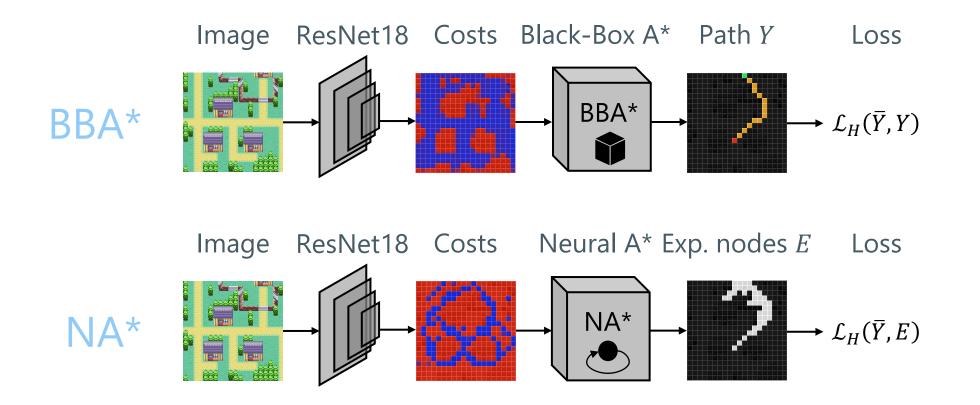
Accuracy:

cost ratio = predicted path cost / true path cost

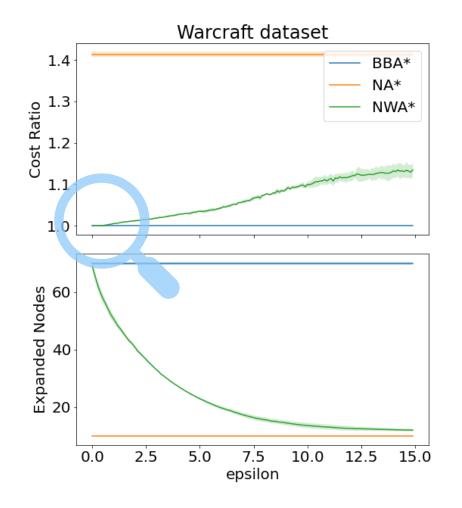
Efficiency:

expanded nodes = # of nodes expanded during the search

Baselines

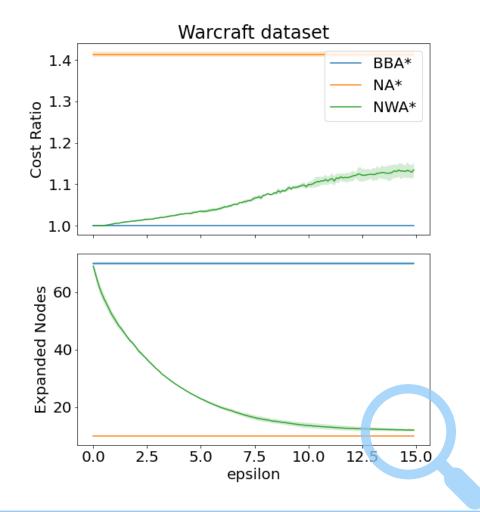


Results, Warcraft data



Low ϵ : NWA* as accurate as BBA* (cost ratio \approx 1).

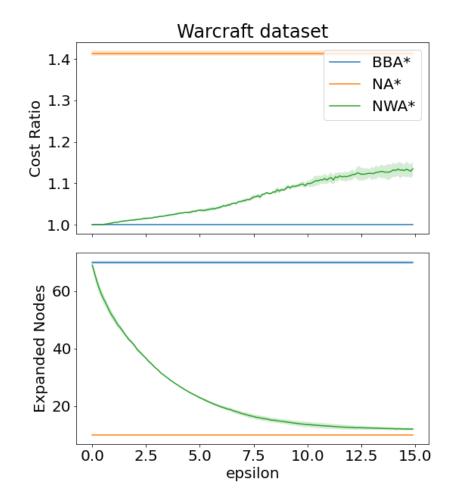
Results, Warcraft data



Low ϵ : NWA* as accurate as BBA* (cost ratio \approx 1).

High ϵ : NWA* as efficient as NA* (expanded nodes \approx 10) with better cost ratio.

Results, Warcraft data

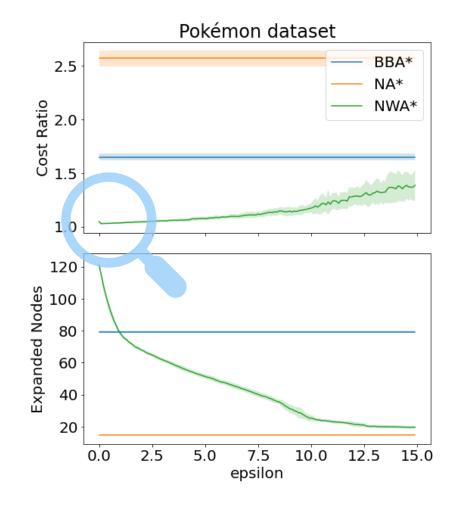


Low ϵ : NWA* as accurate as BBA* (cost ratio \approx 1).

High ϵ : NWA* as efficient as NA* (expanded nodes \approx 10) with better cost ratio.

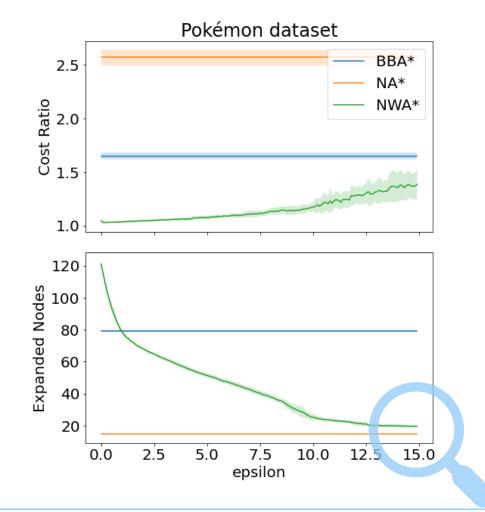
NWA* can imitate the behavior of the baselines providing a principled, smooth tradeoff between accuracy and efficiency.

Results, Pokémon data



Low ϵ : NWA^{*} is the most accurate (cost ratio \approx 1).

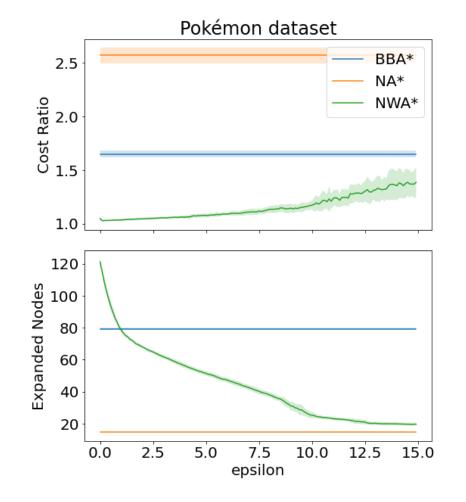
Results, Pokémon data



Low ϵ : NWA^{*} is the most accurate (cost ratio \approx 1).

High ϵ : NWA* as efficient as NA* (expanded nodes ≈ 20), with better cost ratio.

Results, Pokémon data

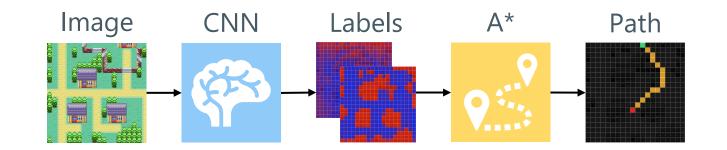


Low ϵ : NWA^{*} is the most accurate (cost ratio \approx 1).

High ϵ : NWA* as efficient as NA* (expanded nodes \approx 20), with better cost ratio.

NWA* can outperform the baselines in a complex scenario.

Conclusions



Enable planning on raw, unlabeled images. Tradeoff planning accuracy for efficiency.

Propose a novel, tilebased dataset.

References

- Russell, S.J., Norvig, P.: Artificial intelligence a modern approach: the intelligent agent book (1995)
- Hansen, E.A., Zhou, R.: Anytime heuristic search (2007)
- Vlastelica, M., Paulus, A., Musil, V., Martius, G., Rolnek, M.: Differentiation of blackbox combinatorial solvers (2020)
- Yonetani, R., Taniai, T., Barekatain, M., Nishimura, M., Kanezaki, A.: Path planning using neural A* search (2021)
- Archetti, A., Cannici, M., Matteucci, M.: Neural Weighted A*: Learning Graph Costs and Heuristics with Differentiable Anytime A* (2021, submitted)