
Regret-based Traces-Exploration Abstractions for

Game Solving

Jacopo P. Gargano
DEIB, Politecnico di Milano

Milan, Italy
jacopopio.gargano@mail.polimi.it

Nicola Gatti
DEIB, Politecnico di Milano

Milan, Italy
nicola.gatti@polimi.it

Abstract

Despite Artificial Intelligence’s vision being on general intel-
ligence, development of game-theoretical methods to find op-
timal strategies has mainly been focused on domain-specific
tasks and recreational games, allowing for little domain in-
dependence. The complexity of most real-world strategic
scenarios, including governance and military, mainly due to
the huge number of states and actions, has not allowed the
proposed algorithms to scale. In spite of these challenges,
game realizations observed through actual play or simula-
tions are readily accessible. As such, we focus our research
on developing a domain-independent model-free abstraction
framework, able to find approximate mixed strategy Nash
Equilibria in any extensive-form game in a simulation-based
fashion. We propose Regret-based Traces-Exploration Coun-
terfactual Regret Minimization (ReTrE), a game-theoretical
framework leveraging deep neural networks and confidence-
based exploration techniques to approximate the behavior
of Counterfactual Regret Minimization (CFR), an optimal re-
gret minimization algorithm, in the full game. We show that
ReTrE achieves comparable performance with CFR in terms
of exploitability when dealing with games small enough to
be analyzed by both. We analyze different configurations
for the proposed framework, whose flexibility and scalabil-
ity allow suitability for a variety of domains. Therefore, the
practical use of the proposed framework in large games is
possible and performance is likely to be in line with what
CFR could theoretically achieve, allowing to find competitive
suboptimal strategies.

Keywords: Algorithmic Game Theory, Confidence-based Ex-
ploration, Equilibrium Computation

1 Introduction

Most real-world strategic scenarios, including theoretical
economics, political science, and military are suitable for
classical game theoretical analysis [17]. However, their com-
plexity, mainly due to the huge or infinite number of states
and actions, has not allowed the proposed algorithms to
scale. These scenarios are expressed through large and in-
finite games, respectively infeasible and impossible to fully
represent in practice, as their states and actions belong to
a huge or continuous space. Obtaining exact information

about these games is possible by collecting game realiza-
tions and corresponding payoffs for the players involved,
according to their preferences.
In order to cope with complexity in decision making for

large extensive-form games, the concept of abstracting games

was developed by Billings et al. [6], providing a way to lower
game complexity while retaining most of the relevant infor-
mation. Abstracting generally consists in building a smaller
version of the game tree with a reduced number of states
and actions. Marvin Minsky medal recipients Brown and
Sandholm developed Libratus [9], the most competitive two-
players Texas hold’em poker AI, by leveraging abstractions,
and, a few years later, extended it to Pluribus [10] (up to six-
players). Abstractions are designed for games with signals,
in which the game tree is the same in terms of rules and avail-
able actions, regardless of the information defining states. De-
spite the remarkable contributions in the field of abstractions,
there are still several open problems to tackle, such as do-
main independence and model-freedom. A general approach
for solving these games, namely finding optimal strategies
for the players, would allow significant breakthroughs in the
several applications. The aim of game-theoretical analysis is
to find strategies for the agents allowing them to reach an
equilibrium (usually, a Nash Equilibrium [19]), in which each
player does not benefit from deviating from their strategy,
keeping the strategies of all the other players fixed.
What makes playing equilibrium strategies so important

to agents is knowing the worst-case utility they will receive
before playing. In fact, as long as an agent sticks to the equi-
librium strategy, its opponentswill not benefit from deviating
from the equilibrium strategy itself, as doing so would result
in gaining a lower utility. Moreover, according to Nash’s
Existence Theorem [18], every game with a finite number of
players in which each player can choose from finitely many
strategies has at least one Nash Equilibrium. As such, the goal
of this work is to develop a model-free abstraction method,
able to find approximate mixed strategy Nash Equilibria in
any extensive-form game in a simulation-based fashion, that
is, starting from observations, obtained via actual play or
simulations. We focus our inquiry on two-player zero-sum
extensive-form games, in which each player’s gain or loss of
utility is exactly balanced by the losses or gains of the utility
of the other.

Original Contributions. We propose ReTrE, a domain-
independent pre-play game-theoretical framework leverag-
ing deep neural networks and confidence-based exploration
techniques to approximate the behavior of Counterfactual
Regret Minimization (CFR), an optimal regret minimization
algorithm, in the full game. ReTrE obviates the need for
abstraction by using deep neural networks to find subopti-
mal competitive strategies in large games and to focus on
the most exploitable parts of the game so as to approach
equilibria. We evaluate ReTrE’s performance through Leduc
Poker by measuring its exploitability in the full game. We
analyze different configurations of ReTrE, tweaking some
parameters to simulate different scenarios and to find the
best performing version. We observe ReTrE achieves com-
parable performance with respect to CFR, though being an
approximation of it. Thanks to its flexibility and scalabil-
ity, ReTrE results in a suitable framework for a variety of
domains.

2 Notation and Background

2.1 Game Theory

We focus our inquiry on sequential games, in which players
play in succession taking turns. Sequential, or extensive-form,
games are represented through a game tree, that is a triple
(𝑆, 𝐸, 𝑠0) where (𝑆, 𝐸) is an oriented graph – 𝑆 the set of
vertices, or states, 𝐸 the set of edges – and 𝑠0 ∈ 𝑆 is the root
of the tree, namely a vertex such that there is a unique path
from 𝑠0 to 𝑠 , ∀𝑠 ∈ 𝑆 \ {𝑠0}.

An imperfect-information extensive-form game Γ is a tu-
ple (𝑁,𝐴, 𝑆,𝑉 , 𝑍, 𝐻, 𝜒, 𝜌, 𝜃,𝑈), where: 𝑁 is the set of players;
𝐴 is the set of actions, and 𝐴ℎ ⊆ 𝐴 is the set of available
actions at information set h; 𝑆 is the set of states; 𝑉 ⊆ 𝑆 is
the set of nonterminal nodes; 𝑍 ⊆ 𝑆 is the set of terminal
nodes (𝑍 ∩ 𝑉 = ∅ and 𝑍 ∪ 𝑉 = 𝑆); 𝐻 = {𝐻1, ..., 𝐻𝑛} is the
collection of information sets of all players, and 𝐻𝑖 is an
information partition of 𝑉𝑖 such that decision nodes within
the same information set ℎ ∈ 𝐻𝑖 are indistinguishable by
player i; 𝜒 : 𝑉 → 2𝐴 is a function assigning to each nonter-
minal node a set of possible actions; 𝜌 : 𝑉 → 𝑁 is a function
assigning to each nonterminal node the player 𝑖 ∈ 𝑁 taking
an action at that node; 𝜃 : 𝑉 ×𝐴→ 𝑆 is a function mapping
a nonterminal node and an action to the following state;
𝑈 = {𝑢1, ..., 𝑢𝑛} is the collection of utility functions of all
players.

When a game is finite but large or infinite, it is not possible
to build an explicit representation of it. In order to obtain
exact information on the game, game realizations in the
form of traces and corresponding payoffs for the players are
collected. In this setting, payoffs are available as the output
of an oracle, which can be intended as a simulator, rather
than specified analytically or through a payoff matrix, which
is the classical approach [28].

A simulation-based game is a tuple (𝑁, Σ,𝑂), where 𝑁
is the set of players, Σ is the set of strategies, and 𝑂 is an
oracle producing a possibly noisy sample from the joint
payoff function of players, given a joint strategy. A trace of
a game is an array 𝜏 = (𝑠1, 𝑎1, ..., 𝑠𝑚, 𝑎𝑚, 𝑧), where 𝑠 𝑗 ∈ 𝑉
are the traversed states, 𝑎 𝑗 ∈ 𝐴 are the undertaken actions,
𝑗 ∈ [1,𝑚], 𝑠𝑚 and 𝑎𝑚 such that 𝑧 = 𝜃 (𝑠𝑚, 𝑎𝑚) ∈ 𝑍 , namely
the history of the trace reaches a terminal node.

A behavioral strategy is a function 𝜎𝑖 : 𝐻𝑖 → Δ |𝐴𝐻𝑖
| , 𝑖 ∈ 𝑁 ,

that associates to each information set ℎ ∈ 𝐻𝑖 a probability
distribution over the available actions𝐴ℎ at that information
set ℎ. A strategy, or policy, 𝜎 , is a vector of |𝑁 | behavioral
strategies 𝜎𝑖 , one for each player in 𝑁 . Given player 𝑖 and
the opponents’ strategy 𝜎−𝑖 , the player’s best response to
𝜎−𝑖 is a strategy 𝐵𝑅(𝜎−𝑖) ∈ Σ such that 𝑢𝑖 (𝐵𝑅(𝜎−𝑖), 𝜎−𝑖) =
max𝜎′

𝑖
∈Σ𝑖 𝑢𝑖 (𝜎 ′𝑖 , 𝜎−𝑖).

Given a game, a strategy 𝜎∗ is a Nash Equilibrium (NE) if
and only if, ∀𝑖 ∈ 𝑁 , ∀𝜎𝑖 ∈ Σ𝑖 it holds 𝑢𝑖 (𝜎∗) ≥ 𝑢𝑖 (𝜎𝑖 , 𝜎∗−𝑖),
where 𝑢𝑖 (𝜎) is the expected utility of player 𝑖 if strategy 𝜎 is
played, Σ𝑖 is the set of strategies of player i, 𝜎∗−𝑖 is a strategy
containing the strategies of all players except that of player
𝑖 , and (𝜎𝑖 , 𝜎∗−𝑖) is the strategy obtained by the combination
of 𝜎𝑖 and 𝜎∗−𝑖 .
Let, for any 𝜎 ∈ Σ, 𝛿𝑖 (𝜎) = 𝑢𝑖

(
𝐵𝑅(𝜎−𝑖), 𝜎−𝑖

)
− 𝑢𝑖 (𝜎) and

𝜀 = max𝑖∈𝑁 𝛿𝑖 (𝜎). Then, given a NE 𝜎∗, and exploitability
𝑒 (𝜎𝑖) = 𝑢𝑖

(
𝜎∗𝑖 , 𝐵𝑅(𝜎∗𝑖)

)
− 𝑢𝑖

(
𝜎𝑖 , 𝐵𝑅(𝜎𝑖)

)
, an 𝜀-approximate

Nash Equilibrium (𝜀-NE) is a NE where no player has ex-
ploitability 𝑒 (𝜎𝑖) > 𝜀. When it holds 𝛿𝑖 (𝜎) = 0,∀𝑖 ∈ 𝑁 , then
𝜎 is a NE.

2.2 Equilibria

Algorithmic Game Theory is a field of study that aims to
analyze strategic conditions and design algorithms able to
find strategies allowing agents to reach an equilibrium.
Once a strategy is found, its performance is evaluated

through its exploitability. The exploitability 𝑒 (𝜎𝑖) of a
strategy 𝜎𝑖 in a game is how much worse 𝜎𝑖 performs
versus 𝐵𝑅(𝜎𝑖) compared to how a NE strategy 𝜎∗𝑖 does
against 𝐵𝑅(𝜎∗𝑖). More formally, 𝑒 (𝜎𝑖) = 𝑢𝑖

(
𝜎∗𝑖 , 𝐵𝑅(𝜎∗𝑖)

)
−

𝑢𝑖
(
𝜎𝑖 , 𝐵𝑅(𝜎𝑖)

)
.

A commonly used metric for poker AI evaluation is Nash-
Conv, an exploitability evaluation metric defined over a
strategy 𝜎 as: NashConv(𝜎) = ∑

𝑖∈𝑁 max𝜎′
𝑖
∈Σ𝑖 𝑢𝑖 (𝜎 ′𝑖 , 𝜎−𝑖). It

represents, in total, howmuch each player gains by deviating
to their best response unilaterally. It can be interpreted as a
distance from a NE.

We define the reach of an information set to capture how
likely an information set is to be visited during play. The
reach 𝜋𝜎 (ℎ) = ∏

ℎ′ ·𝑎⊂ℎ 𝜎𝑖′ (ℎ′, 𝑎) of an information set ℎ is
the probability ℎ is reached if all players play according to
𝜎 , where 𝑖 ′ is the player playing at information set ℎ′. All
players contribute to the reach: we define 𝜋𝜎

𝑖
as the agent

reach and 𝜋𝜎−𝑖 as the external or counterfactual reach, that is,

the probability of reaching ℎ with strategy 𝜎 except that we
treat 𝑖’s actions to reach the state as having probability 1.
Specifically, 𝜋𝜎 (ℎ) = 𝜋𝜎

𝑖
(ℎ) + 𝜋𝜎−𝑖 (ℎ), for any player 𝑖 ∈ 𝑁 .

The counterfactual value of information set ℎ, for player
𝑖 , if all players play according to strategy 𝜎 , is given by
𝑣𝜎
𝑖
(ℎ) = ∑

𝑧∈𝑍 𝜋
𝜎
−𝑖 (ℎ) · 𝜋𝜎 (ℎ, 𝑧) · 𝑢𝑖 (𝑧).

Finally, player 𝑖’s regret of not having taken action 𝑎 at
information set ℎ and having instead followed strategy 𝜎
is 𝑟𝑖 (ℎ, 𝑎) = 𝑣𝜎

𝑖
(ℎ, 𝑎) − 𝑣𝜎

𝑖
(ℎ), where 𝑣𝑖 is the counterfac-

tual value. Player 𝑖’s cumulative counterfactual regret of
not having taken action 𝑎 at information set ℎ at time 𝑇
is 𝑅𝑇𝑖 (ℎ, 𝑎) =

∑𝑇
𝑡=1 𝑟

𝑡
𝑖 (ℎ, 𝑎). In two-player zero-sum games,

where each player’s gain or loss of utility is exactly balanced
by the losses or gains of the utility of the other players, if
both players’ average total regret satisfies 𝑅

𝑇
𝑖

𝑇
≤ 𝜀, then their

average strategies (𝜎𝑇1 , 𝜎𝑇2) form a 2𝜀-NE [29].

2.3 Counterfactual Regret Minimization (CFR)

The framework we will adopt throughout this inquiry is that
of regret minimization. The most successful family of algo-
rithms for imperfect-information games have been variants
of Counterfactual Regret Minimization (CFR), first intro-
duced by Zinkevich et al. [30].

Counterfactual Regret Minimization (CFR) is an iterative
policy improvement algorithm that computes a new strategy
𝜎𝑡 on each iteration 𝑡 . The average of these strategies con-
verges to a Nash Equilibrium as 𝑡 →∞. On each iteration 𝑡 ,
CFR traverses the entire game tree and updates the regrets
for every information set in the game according to strategy
𝜎𝑡 . These regrets define a new strategy 𝜎𝑡+1. The strategy
𝜎𝑇+1 at time 𝑇 + 1 is obtained through regret-matching:

𝜎𝑇+1𝑖 (ℎ, 𝑎) =

𝑅
𝑇 ,+
𝑖
(ℎ,𝑎)∑

𝑎∈𝐴ℎ
𝑅
𝑇 ,+
𝑖
(ℎ,𝑎)

if
∑
𝑎∈𝐴ℎ

𝑅
𝑇,+
𝑖
(ℎ, 𝑎) > 0

1
|𝐴ℎ | otherwise .

(1)

For each information set, Equation 1 is used to compute
action probabilities in proportion to the positive cumulative
regrets [20]. For each action, CFR then produces the next
state in the game, and computes utilities of each actions re-
cursively. Regrets are computed from the returned values,
and the value of playing for the current state is finally com-
puted and returned. It is the average strategy that converges
to a Nash Equilibrium, and not the final strategy.
The initial policy is set to uniform random. The average

policy 𝜎𝑇𝑖 is:

𝜎𝑇𝑖 (ℎ, 𝑎) =
∑𝑇
𝑡=1 𝜋

𝜎,𝑡
𝑖
(ℎ) · 𝜎𝑡𝑖 (ℎ, 𝑎)∑𝑇

𝑡=1 𝜋
𝜎,𝑡
𝑖
(ℎ)

. (2)

Since CFR only needs to store values at each information
set, its space requirement is𝑂 (|𝐻 |). However, CFR requires a
complete traversal of the game tree on each iteration, which
prohibits its use in many large games. The convergence
bound of CFR is 𝑂 (1√

𝑇
).

2.4 Abstractions

The complexity of decision making is positively correlated to
the number of states and actions. This is whywhen analyzing
large games, in order to lower game complexity while trying
to retain all relevant information, abstractions are used.

A game abstraction is a smaller version of the game with
the purpose of capturing the most essential properties of the
real domain, such that the solution of the abstracted game
provides a useful approximation of an optimal strategy for
the underlying real game.
Abstractions are distinguished in three categories: in-

formation abstractions, action abstractions, and simulation-

based abstractions. Information abstraction is an abstraction
method such that the agents cannot distinguish some of the
states that they could distinguish in the actual game [22]. In
action abstractions the number of available actions to each
player is less than in the original game. In simulation-based

abstraction the abstracted version of the game is built starting
from game realizations.

3 Related Work

3.1 Regret Minimization

Besides CFR, other regret minimization algorithms were
developed contributing with major improvements.
In CFR+ any action with negative regret 𝑟𝑖 (ℎ, 𝑎) < 0

is set to 0 regret, that is 𝑟𝑖 (ℎ, 𝑎) = 𝑚𝑎𝑥
(
𝑟𝑖 (ℎ, 𝑎), 0

)
. Then,

CFR+ uses a weighted average strategy where iteration 𝑇
is weighted by 𝑇 rather than using a uniformly-weighted
average strategy as in CFR. CFR+ is worse in exploitabil-
ity compared to CFR, however it typically converges much
faster than CFR.

Linear CFR (LCFR) is identical to CFR, except on iteration
𝑡 the updates to the regrets and average strategies are given
weight 𝑡 .

Monte Carlo CFR (MCCFR) is a variant of CFR in which
certain player actions or chance outcomes are sampled [16].
Combined with abstractions, MCCFR has produced state-of-
the-art poker AIs (e.g., Libratus [9]). The key to the approach
behind MCCFR is to avoid traversing the entire game tree
on each iteration, while still having the immediate counter-
factual regrets be unchanged in expectation, restricting the
terminal histories considered at each iteration.
The most relevant work to our research is DeepCFR [7],

a variant of CFR that obviates the need for abstraction by
instead using deep neural networks to approximate the be-
havior of CFR in the full game. It avoids calculating and ac-
cumulating regrets at each information set, by generalizing
across similar ones using function approximation via deep
neural networks. DeepCFR achieves strong performance in
large poker games compared to domain specific abstraction
techniques without relying on advanced domain knowledge.
Variants of DeepCFR with improved performance are Sin-
gleDeepCFR [25] and DREAM [26].

3.2 Leveraging Abstractions

The majority of research carried out on abstractions is on
information abstraction. Early works were initiated by Shi
et al.[23] and by Billings et al. [6] leveraging linear program-

ming and bucketing. More specific information abstractions
were introduced, including automated [11], expectation-based
[12], potential-aware [13], and extensive-form game abstrac-
tions [15].
Action abstractions were first analyzed by Hawkin et al.

[14] studying the choice of the value of parameters of an
action. The first substantial contribution to the field of action
abstraction was made by Brown et al. [8] providing the first
action abstraction algorithm with convergence guarantees
for extensive-form games. Basak [5] introduced the idea of
abstracting games by clustering strategies and then solving
them by finding and solving suitable subgames.

A theoretical contribution in the field of simulation-based
abstractions was given by Tuyls et al. [27] by deriving guar-
antees on the quality of all equilibria learned from finite
samples providing theoretical bounds for empirical game-
theoretical analysis of complex multi-agent interactions.
They show that a NE of the empirical game is an approximate-
NE of the true underlying game and they provide insights
on the number of data samples required to obtain a close
enough approximation. Furthermore, Areyan et al. [3] study
simulation-based games starting from game traces and ap-
proximate game utilities, generating an abstracted version
of the game through which they are able to learn all pure
equilibria of a game. The most interesting contribution in
the specific field of simulation-based games was made by
Areyan et al. [2], designing algorithms that uniformly approx-
imate simulation-based games with finite sample guarantees,
achieving the same performance as previous work with far
fewer samples.
Still, the most advanced techniques do not rely on ab-

stractions only. The major contributions were developed by
Brown and Sandholm presenting Libratus [9] and Pluribus

[10]. Despite the implementation of the former being limited
to two-player heads-up no-limit poker, the authors claim that
their game-theoretic approach is application-independent.
The latter is an enhanced version of its predecessor able to
play six-player heads-up no-limit poker.

4 ReTrE Counterfactual Regret

Minimization

Regret-based Traces-Exploration Counterfactual Regret Min-
imization (ReTrE) is a domain independent pre-play frame-
work for large games, built on top of DeepCFR, leveraging
neural networks to find suboptimal competitive strategies. In
addition to DeepCFR, it explores the original game focusing
on its most exploitable parts.
The main components of ReTrE are the Policy Network

(PN), a neural network approximating the output strategy of

CFR in the full game, the Exploration Dictionary (ED), a data
structure holding information about the information sets to
guide exploration of the original game, and the Exploration
Network (EN), a neural network approximating the EDwhen
memory resources are not enough, as it is the case of large
games.

4.1 Overview

We hereby provide an overview of ReTrE by describing the
main components and processes from a high level perspec-
tive, deepening the focus right after.

Traces
Abstract

Tree

CFR & PN
Data Collection

Policy Network
Exploration
Dictionary

EV Computation

Exploration
Network

EV on
Original Game

Strategy on
Original Game

Oracle
Original Game

Data

Exploitability
Evaluation

Traces
Exploration

σ, πσ

〈
h, 〈v̄, n〉

〉

〈h, σ̄(h)〉

Figure 1. Overview of ReTrE.

With reference to Figure 1, initially, a set of traces is avail-
able, obtained either offline – as a subset of all the available
ones – or online – either through an oracle or in a Reinforce-
ment Learning like fashion.

The collected traces make up a smaller game tree, whose
size must be smaller than 1012 nodes to be analyzed through
tabular regret minimization techniques.

We run 𝑇 iterations of CFR for each player obtaining the
average strategy for the two players, which converges to a
NE as 𝑇 →∞ [30]. While running CFR, we collect samples
to train the PN and the information sets’ value and external
reach are stored for Exploration Value computation.
Once CFR is over, for every information set ℎ, for ev-

ery available action 𝑎 ∈ 𝐴ℎ , we compute the Exploration
Value (EV) – the value guiding the traces exploration phase
– through the information sets’ value and reach obtained
through CFR. Then we update the ED entry for the child
information set reached taking action 𝑎 from information set
ℎ with the couple ⟨𝑣, 𝑛⟩, where 𝑣 is the average EV and 𝑛 is
the number of times the child information set was included
in the abstract game tree throughout ReTrE iterations. Once
CFR is over and the ED is updated, we train the EN using
the ED.

The ED and the EN are then used in the traces exploration
phase, in which the new set of traces is obtained by choosing
those traces maximizing an upper confidence bound of the
EV.
The new traces are then used to generate a new abstract

game tree focused on the parts of the original game that
are more exploitable by the opponent compared to the pre-
vious ones. The process described so far is repeated until
computational resources are available.

Finally, at the last iteration of ReTrE, we train the PNwith
the collected samples to obtain the ultimate PN defining an
artificial agent able to play an 𝜀-NE strategy.

4.2 Policy Network

The ultimate objective of game solving consists in finding a
competitive strategy for a game. To approximate the average
strategy of the original game, we resort to the PN, introduced
in DeepCFR [7], and whose architecture is shown in Figure
2. Given an information set ℎ, the network 𝑃𝑁 : 𝐻 → Δ |𝐴𝐻𝑖

|

predicts the average strategy over the available actions 𝐴ℎ .
The learning problem we define consists in the supervised
learning of the probability distribution over the actions avail-
able at a certain information set. Therefore, the network
training samples are in the form ⟨ℎ, 𝜎ℎ⟩. Information sets
are represented by the private information of the player
they belong to, by the public information and by the history
of the game until then. The training samples are collected
throughout CFR traversals of the abstract tree.

...

...
...

Private info

Public info

History - a1

History - ah

H1

Hm

σ(h; a1)

σ(h; an)

Input
layer

Hidden
layers

Ouput
layer

H

I

S

T

O

R

Y

S

T

R

A

T

E

G

Y

I

N

F

O

R

M

A

T

I

O

N

S

E

T

Figure 2. Policy Network.

Since the learning problem consists in estimating a prob-
ability distribution, we minimize the Kullback-Leibler di-

vergence, or relative entropy: a measure of how one prob-
ability distribution is different from another. For probabil-
ity distributions P and Q of a continuous random variable,
the Kullback–Leibler divergence is defined as 𝐷𝐾𝐿 (𝑃 | |𝑄) =∫ ∞
−∞ 𝑝 (𝑥) log 𝑝 (𝑥)

𝑞 (𝑥)𝑑𝑥 .

4.3 Exploration Dictionary and Network

The ED is a data structure holding information for each in-
formation set, until memory allows. The information stored

in the ED is the couple
〈
ℎ, ⟨𝑣, 𝑛⟩

〉
, where: ℎ is an informa-

tion set; 𝑣 is the average EV; 𝑛 is the number of times that
information set ℎ was visited throughout ReTrE iterations.
The EV 𝑣 is what guides the traces exploration phase

together with 𝑛. We use a measure of the counterfactual
value of information sets for the EV, however, other measures
may be used, such as the regret or the advantage [7]. The
EV that we use is the following:

𝑣𝑖 (ℎ, 𝑎) =

∑𝑇
𝑡=1

(
𝑡 · 𝜋𝜎,𝑡−𝑖 (ℎ) ·

(
𝑣
𝜎,𝑡
𝑖
(𝜃 (ℎ, 𝑎)) − 𝑣𝜎,𝑡

𝑖
(ℎ)

))∑𝑇
𝑡=1

(
𝑡 · 𝜋𝜎,𝑡−𝑖 (ℎ)

) , (3)

where T is the number of CFR iterations. This measure is very
similar to the regret, and it only considers the opponents’
strategy. This is fundamental, as humbleness is for learning.
In fact, if the player willing to learn an optimal strategy used
an EV that is biased on their own strategy, they would not be
completely able to explore new possibilities in the original
game, possibly lowering exploitability.
This component has limited size, so when it reaches its

maximum capacity we remove least recently visited infor-
mation sets, namely the ones with lower 𝑛, to make space
for the newly observed ones, which, as𝑇 →∞, are the ones
where the focus shall be.

Since the size of the ED is limited, we resort to the EN to
estimate the EV. The EN is a neural network 𝐸𝑁 : 𝐻 → R
that takes as input an information set ℎ ∈ 𝐻 and outputs
the estimated EV for it. Since the learning problem consists
in estimating a real positive number, we train the EN by
minimizing the Mean Squared Error.
When the ED maximum capacity is reached, some infor-

mation sets need to be discarded together with their infor-
mation. While the EV can be estimated through the EN, we
use the following methodology for 𝑛. First, if 𝑛 needs to be
estimated, it means that the information set was either never
considered in the past or it was previously discarded. Then, 𝑛
cannot be greater than the minimum value stored in the ED,
namely 𝑛 ≤ �̂� = minℎ′∈𝐸𝐷 𝑛ℎ′ , otherwise it would be in the
ED. Therefore, 𝑛 assumes values in [0, �̂�]. The estimated 𝑛
must be �̂�, otherwise 𝑛 ∈ [0, �̂�] could be not valid for future
cases.

Therefore, a sound estimation of 𝑛 is �̂� = minℎ′∈𝐸𝐷 𝑛ℎ′ .

4.4 The Algorithms

ReTrE (Algorithm 1) is the core algorithm of the framework.
It takes as parameters: the Exploration Parameter (EP), that
is an integer 𝑘 , defining the maximum number of actions to
explore for each information set; the players of the game; the
number of iterations it is run for (𝑇) and those of CFR (T). At
each iteration, ReTrE fetches new traces focusing the search
on those parts of the original game tree that maximize the
chosen EV. Once the EV is computed or estimated through
the EN, the ED is updated in ComputeEV (Algorithm 2). The

EN is trained at each ReTrE iteration, and the PN is trained
only at the end, as there is no need to train it beforehand
since the search becomes more focused on the interesting
parts of the tree as 𝜏 → 𝑇 . Note that 𝜋𝜎 at Line 8 is obtained
through CFR. The output of ReTrE is the PN for both players,
which is indeed the only component needed to play.

Algorithm 1 ReTrE

1: function ReTrE(𝑘 , 𝑁 , 𝑇 , 𝑇):
2: Initialize 𝑃𝑁, 𝐸𝐷, 𝐸𝑁 for each player 𝑖 ∈ 𝑁
3: for ReTrE iteration 𝜏 = 1 to 𝑇 do

4: 𝑡𝑟𝑎𝑐𝑒𝑠 ← GetTracesUCB(𝐸𝐷, 𝐸𝑁, 𝜏, 𝑘)
5: for CFR iteration 𝑡 = 1 to 𝑇 do

6: for all 𝑖 ∈ 𝑁 do

7: CFR(𝑖, 𝑡, 𝜏)
8: ComputeEV(𝜏, 𝜋𝜎 , 𝐸𝐷, 𝐸𝑁)
9: Train 𝐸𝑁 through 𝐸𝐷
10: Train 𝑃𝑁

Algorithm 2 ReTrE - EV Computation and Collection
1: function ComputeEV(𝜏 , 𝜋𝜎 , 𝐸𝐷 , 𝐸𝑁):
2: for all information sets ℎ ∈ 𝐻 do

3: 𝑖 ← 𝜌 (ℎ)
4: for all 𝑎 ∈ 𝐴ℎ do
5: ℎ′← 𝜃 (ℎ, 𝑎)
6: 𝑣𝑖 ← compute EV using Eq. 3
7: if 𝜏 = 1 then

8: 𝑣 ← 𝑣𝑖
9: 𝑛 ← 1
10: else

11: if ℎ′ ∈ 𝐸𝐷𝑖 then
12: 𝑣, 𝑛 ← get ⟨𝑣, 𝑛⟩ of ℎ′ from 𝐸𝐷𝑖
13: else

14: 𝑣 ← predict 𝑣 (ℎ′) through 𝐸𝑁𝑖
15: 𝑛 ← estimate 𝑛
16: 𝑣 ← 𝑣 ·𝑛+𝑣𝑖

𝑛+1 ⊲ compute the average EV
17: 𝑛 ← 𝑛 + 1
18: Store

〈
ℎ′, ⟨𝑣, 𝑛⟩

〉
⊲ store information in 𝐸𝐷𝑖

Differently from DeepCFR, the traces exploration phase
leverages an Upper Confidence Bound (UCB) like approach
to guarantee exploration and exploitation.
GetTracesUCB (Algorithm 3) gathers the traces to run

CFR on by calling TraverseUCB (Algorithm 4), which guides
the search phase. The latter is a recursive algorithm which
starts from a state 𝑠 and explores the original game. In our
implementation, the original game is explored, however, sim-
ilarly, an oracle or a set of data could be queried with the
relative parameters to perform exploration.
TraverseUCB first builds a set of tuples ⟨𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑡𝑎𝑡𝑒⟩,

namely the possible parts of the original game tree to explore,

Algorithm 3 ReTrE - Traces Gathering
1: function GetTracesUCB(𝐸𝐷 , 𝐸𝑁 , 𝜏 , 𝑘):
2: 𝑡𝑟𝑎𝑐𝑒𝑠 ← empty list
3: 𝑠0 ← get initial state
4: 𝑡𝑟𝑎𝑐𝑒 ← empty list
5: 𝑡𝑟𝑎𝑐𝑒 .add(𝑠0)
6: for all 𝑠 ′ ∈ 𝜃 (𝑠0, 𝑅𝐴) do
7: 𝑡𝑟𝑎𝑐𝑒 .add

(
⟨𝑅𝐴, 𝑠 ′⟩

)
8: TraverseUCB(𝑠 ′, 𝑡𝑟𝑎𝑐𝑒𝑠, 𝑡𝑟𝑎𝑐𝑒, 𝐸𝐷, 𝐸𝑁, 𝜏, 𝑘)
9: 𝑡𝑟𝑎𝑐𝑒 .remove

(
⟨𝑅𝐴, 𝑠 ′⟩

)
10: return 𝑡𝑟𝑎𝑐𝑒𝑠

and computes the EV accordingly. Then, it explores the 𝑘
most promising ones.

For state 𝑠:
• If 𝑠 is terminal, then the trace can be inserted in the
set of traces (Lines 3-5).
• Instead, if 𝑠 is chance, we consider all of its outcomes as
extensions to the current trace (Lines 6-8). 𝑅𝐴 stands
for Random Action.
• Otherwise, we retrieve the EV and the number of times
the information set associated to 𝑠 was visited through-
out ReTrE.
– If the information set is in the 𝐸𝐷 , then we retrieve
its information directly from it (Lines 15-16).

– Else, we estimate the EV through the EN, and 𝑛 ac-
cordingly (Lines 17-19).

Then, we compute the UCB value associated with EV and
𝑛 (Lines 20-21). The UCB we use in our implementation is
that of UCB1 [4]:

𝑢𝑐𝑏 = 𝑣 +
√

2 log(𝜏)
𝑛

. (4)

Finally, we sort the state’s children on 𝑢𝑐𝑏 descending
(Line 22). We continue the trace generation traversing only
on the first 𝑘 children, 𝑘 being the EP determining the size
of the abstract game tree (Lines 23-28). When 𝑘 = |𝐴ℎ |, the
whole game tree is explored.

4.5 Convergence

Our framework employs twomain approaches: strategy com-
putation through regret minimization and exploitability min-
imization through upper confidence bound exploration. The
former is achieved through CFR, converging to a Nash equi-
librium in any two-player zero-sum game with a theoretical
convergence bound of 𝑂 (1√

𝑇
), where 𝑇 is the number of

CFR iterations [30]. ReTrE limits the number of actions CFR
considers at each information set to the EP. Therefore, the
convergence of CFR to a NE is approximately respected. On
the other hand, the regret of UCB1, and consequently that of
ReTrE, is proportional to𝑂 (𝑙𝑜𝑔(𝑇)), where 𝑇 is the number
of ReTrE iterations [4].

Algorithm 4 ReTrE - Traces Exploration
1: function TraverseUCB(𝑠 , 𝑡𝑟𝑎𝑐𝑒𝑠 , 𝑡𝑟𝑎𝑐𝑒 , 𝐸𝐷 , 𝐸𝑁 , 𝜏 , 𝑘):
2: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑡𝑎𝑡𝑒𝑠 ← empty list
3: if 𝑠 is terminal then
4: 𝑡𝑟𝑎𝑐𝑒𝑠 .insert(𝑡𝑟𝑎𝑐𝑒)
5: return

6: else if 𝑠 is chance then
7: for all 𝑠 ′ ∈ 𝜃 (𝑠, 𝑅𝐴) do
8: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑡𝑎𝑡𝑒𝑠 .insert

(
⟨𝑅𝐴, 𝑠 ′⟩

)
9: else

10: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← empty list
11: for all 𝑎 ∈ 𝐴𝑠 do ⊲ 𝐴𝑠 are the legal actions at 𝑠
12: 𝑠 ′← 𝜃 (𝑠, 𝑎)
13: ℎ′← information set corresponding to 𝑠 ′
14: 𝑖 ← 𝜌 (𝑠)
15: if ℎ′ ∈ 𝐸𝐷𝑖 then
16: 𝑣, 𝑛 ← get ⟨𝑣, 𝑛⟩ of ℎ′ from 𝐸𝐷𝑖
17: else

18: 𝑣 ← predict 𝑣 (ℎ′) through 𝐸𝑁𝑖
19: 𝑛 ← estimate 𝑛
20: 𝑢𝑐𝑏𝑠′ ← 𝑣 +

√
2 log(𝜏)
𝑛

21: 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛.insert
(
⟨𝑎, 𝑠 ′, 𝑢𝑐𝑏𝑠′⟩

)
22: Sort 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 on 𝑢𝑐𝑏 descending
23: 𝑘 ←𝑚𝑖𝑛(𝑘, |𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 |)
24: 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑡𝑎𝑡𝑒𝑠 ← 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛[: 𝑘]
25: for all 𝑎, 𝑠 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠_𝑠𝑡𝑎𝑡𝑒𝑠 do
26: 𝑡𝑟𝑎𝑐𝑒 .add

(
⟨𝑎, 𝑠⟩

)
27: TraverseUCB(𝑠, 𝑡𝑟𝑎𝑐𝑒𝑠, 𝑡𝑟𝑎𝑐𝑒, 𝐸𝐷, 𝐸𝑁, 𝜏, 𝑘)
28: 𝑡𝑟𝑎𝑐𝑒 .remove

(
⟨𝑎, 𝑠⟩

)
5 Experimental Evaluation

We run experiments on classical Leduc Poker [24], measuring
ReTrE’s performance through strategy exploitability evalua-
tion usingNashConv and running head-to-head simulations.
Despite Leduc Poker being a small game compared to classi-
cal Texas hold’em Poker and to real-world strategic scenarios,
it is fundamental to evaluate suboptimal algorithms (ReTrE)
on games small enough to run an optimal algorithm (CFR)
and compare performances.

In its current implementation, the information ReTrE en-
codes is that of information sets, to be fed to the neural
networks, namely the PN and the EN. We encode an infor-
mation set uniquely by considering the available information
to a player at that information set, including their private
information (their private card), the public information (the
public card, if any) and the history of actions taken by all
players until then.
For instance, this is how a Leduc information set is en-

coded:

⟨𝐽𝑎𝑐𝑘♣, 𝐾𝑖𝑛𝑔♠,𝐶𝐴𝐿𝐿, 𝑅𝐴𝐼𝑆𝐸,𝐶𝐴𝐿𝐿,−,𝐶𝐴𝐿𝐿,−,−,−⟩

where 𝐽𝑎𝑐𝑘♣ is the player’s private card; 𝐾𝑖𝑛𝑔♠ is the public
card; ‘−’ is needed for encoding standardization with other
information sets, as the maximum length of the history of a
Leduc Poker information set is 8.

Best Configuration. ReTrE is a highly configurable
framework, scalable to the requirements imposed by com-
putational resources. In fact, there are several parameters
that can be adjusted: the Exploration Dictionary size, the
Exploration Value, the upper confidence bound, and the Ex-
ploration Parameter 𝑘 .

20 40 60 80 100
0

0.1

0.2

0.3

ReTrE iterations

E
x
p
lo
it
ab

il
it
y

CFR-500
ReTrE

Figure 3. Exploitability Evaluation for CFR-500 and ReTrE’s
best configuration.

Figure 3 compares the performance of CFR with the best
version of ReTrE achieved in Leduc Poker in terms of ex-
ploitability, specifically with 𝑘 = 2, EV from Equation 3,
UCB1, and ED size =∞. Whilst the performance of baseline
CFR-500, namely CFR run for 500 iterations, does not depend
on the number of ReTrE iterations, ReTrE’s performance
does. In particular, just after less than 10 iterations ReTrE
shows good performance compared to CFR-500, and, after
an exploration phase happening later on in the iterations, it
shows lower exploitability than CFR-500, resulting in being
closer to a NE. This result is due to the opportunity that
ReTrE has to focus on the most exploitable parts of the tree,
discarding the less interesting ones, mastering its strategy
accordingly.

Upper Confidence Bound. We compare two different
UCBs with not having a bound at all on the EV for the
Traces Exploration phase. Figure 4 shows the results ob-
tained. In particular, we consider UCB1 as in Equation 4,
UCBt =

√
2 log(𝜏)
𝑛 · (𝜏−1) and no UCB. The figure shows that the best

performance is achieved by UCB1. UCBt’s performance is
close to that of UCB1, as expected, considering their simi-
larity. However, convergence is more stable for UCB1. Not

having an UCB results in mediocre performance, as the algo-
rithm is not able to abandon its belief to explore unexplored
paths reducing exploitability.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

ReTrE iterations

E
x
p
lo
it
ab

il
it
y

CFR-500

ReTrE (UCB1)

ReTrE (UCBt)

ReTrE (no UCB)

Figure 4. Exploitability Evaluation for different UCBs.

Exploration Dictionary Size. ReTrE is a framework
thought and designed for large games. Therefore, we simu-
late its behavior in large games by limiting the size of the
ED. We first consider infinite capacity, which would allow
full tree traversal, and consequently the use of tabular CFR
algorithms. Then, we limit the ED size to 10% and to 1% of
all the information sets. Figure 5 shows the performance of
limited ED size ReTrE. Low capacity does not influence the
exploitability of ReTrE overall, whereas very low capacity
does not show desirable performance.
This result, however, is to be analyzed further as it does

not properly simulate the behavior ReTrE would have in a
large game. In fact, when an information set is not present in
the ED, ReTrE leverages the EN to estimate its EV. The EN is
a neural network which is trained in a deep learning fashion:
information sets are provided as is and their relevant features
are extracted automatically when training. Deep learning
needs many training samples to have solid performances.
This is why it is hard to simulate the behavior ReTrE would
have in large games using a small game.

Exploration Value. We compare different possibilities
for the EV. In particular, we show performance for ReTrE
with the EV of Equation 3, ReTrE-v with the EV being the
information set value, and ReTrE-r where the EV is the
cumulative regret. Figure 6 shows the EV of Equation 3 out-
performs the other two.

Head-to-head Simulations. Finally, we runAI vs AI sim-
ulations to evaluate actual performance during play. First, we
let CFR-500, ReTrE and ReTrE-jr (limited ED) play against
CFR-500. Figure 7 shows the value for the first player playing

10 20 30 40 50
0

0.2

0.4

0.6

0.8

ReTrE iterations

E
x
p
lo
it
ab

il
it
y

ReTrE (ED=∞)

ReTrE (ED=10%)

ReTrE (ED=1%)

Figure 5. Exploitability Evaluation for different ED sizes.

20 40 60 80 100
0

0.1

0.2

0.3

0.4

ReTrE iterations

E
x
p
lo
it
ab

il
it
y

ReTrE
ReTrE-v
ReTrE-r

Figure 6. Exploitability Evaluation for different EVs.

Table 1. AI vs AI results. Row is player 1, Column is player
2. Value is shown for player 1.

CFR-500 ReTrE ReTrE-jr

CFR-500 −0.085 0.136 0.252
ReTrE −0.101 −0.113 0.173
ReTrE-jr −0.294 −0.213 −0.174

against CFR-500. Despite ReTrE achieving lower exploitabil-
ity than CFR-500, it still loses against it. This is due to CFR-
500 being able to exploit ReTrE’s vulnerabilities and not
viceversa. However, ReTrE is closer to a NE. More detailed
results are provided in Table 1.

Results. Overall, ReTrE achieves comparable perfor-
mance with CFR in terms of exploitability when dealing with
games small enough to be analyzed by both. We compare
different configurations to find the most promising one. We

0 2,000 4,000 6,000 8,000 10,000
−0.4

−0.2

0

0.2

Hands

V
al
u
e

CFR vs CFR
ReTrE vs CFR

ReTrE-jr vs CFR

Figure 7. AI vs CFR value for AI.

conclude that the practical use of the proposed framework
in large games is possible and performance is likely to be in
line with what CFR could theoretically achieve, allowing to
find competitive suboptimal strategies.

6 Conclusions

In this work, we focused on the challenge of analyzing large
and infinite games so as to solve them by finding approxi-
mate mixed strategy Nash Equilibria. It is infeasible to repre-
sent these games through a game tree and traverse through
them because of their complexity. This is why in practice
abstractions are used to lower complexity, allowing to find
suboptimal strategies close enough to optimal ones.

We introduced ReTrE, a domain-independent model-free
abstraction framework, able to find approximate mixed
strategy Nash Equilibria in any extensive-form game in a
simulation-based fashion, that is, starting from observations.
ReTrE obviates the need for abstraction by leveraging deep
neural networks to approximate the behavior of CFR, an
optimal regret minimization algorithm, in the full game.
We evaluated ReTrE’s performance by measuring ex-

ploitability on games small enough to be analyzed by CFR
also. Despite being an approximation of it, we showed ReTrE
performs considerably well compared to CFR. As such, con-
sidering the promising results achieved, the practical use of
the proposed framework in large games is possible, allowing
to find competitive suboptimal strategies.
Interestingly, despite having lower exploitability, we ob-

served that, in the case of Leduc Poker, ReTrE loses against
CFR if agents are static. However, in practice, agents are
dynamic, as they can change their strategy. Therefore, in
the long run, a dynamic agent would shift away from their
strategy to exploit the opponent’s vulnerabilities, earning
back what it previously lost.

Finally, besides being a domain-independent framework,
ReTrE is scalable to specific computing requirements by ad-
justing the Exploration Dictionary size and the Exploration
Parameter k.

7 Future Work

ReTrE opens up several promising directions of research
that can be explored next.
First, the performance of ReTrE in large games shall be

evaluated through practical experimentation: more complex
recreational games, such as heads-up no-limit Texas hold’em
Poker and Contract Bridge, can be experimented with ini-
tially. Then, the focus may be shifted towards real-world
applications, such as car racing or cybersecurity scenarios.
Comparing ReTrE with the leading abstraction algo-

rithms, both domain dependent and independent, would
allow for further inquiries and deeper analyses on the ad-
vantages of each method. Furthermore, several other regret
minimization algorithms and variants of CFR can be used
to enhance ReTrE, including LCFR and MCCFR, the latter
showing significant performance when dealing with large
games.
Particularly, capturing the essence of information sets

through enhanced, perhaps domain-specific, embeddings
would allow better performance. In fact, it would be inter-
esting to consider the potential of information sets, building
upon the research of Gilpin et al. [13], by integrating it in a
suitable embedding.
ReTrE leverages UCB1, which is a widely chosen possi-

bility for upper confidence bounds. Using other stochastic
measures for the bound could provide better performance
in practice. Another possibility is to use Bayesian method-
ologies for the learning purpose (e.g., Thompson Sampling
[1]), exploiting prior knowledge on the Exploration Value
of information sets. Moreover, other exploration methods,
such as Monte Carlo search [21], could be applied during the
traces exploration phase.
Finally, ReTrE is a pre-play only framework, namely, it

outputs a suboptimal strategy for an agent to stick with for
the whole game. However, it can be integrated with strat-
egy refinement algorithms, such as depth-limited search, to
exploit the current state of the game and allow for better
performance.

References

[1] Shipra Agrawal and Navin Goyal. 2012. Analysis of thompson sam-
pling for the multi-armed bandit problem. In Conference on learning

theory. 39–1.
[2] Enrique Areyan Viqueira, Cyrus Cousins, and Amy Greenwald. 2020.

Improved Algorithms for Learning Equilibria in Simulation-Based
Games. In Proceedings of the 19th International Conference on Au-

tonomous Agents and MultiAgent Systems. 79–87.
[3] Enrique Areyan Viqueira, Cyrus Cousins, Eli Upfal, and Amy

Greenwald. 2019. Learning Equilibria of Simulation-Based Games.
arXiv:1905.13379 [cs.GT]

https://arxiv.org/abs/1905.13379

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learning 47, 2-3
(2002), 235–256.

[5] Anjon Basak. 2016. Abstraction using analysis of subgames. In Thirtieth
AAAI Conference on Artificial Intelligence.

[6] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T. Schauen-
berg, and D. Szafron. 2003. Approximating Game-theoretic Optimal
Strategies for Full-scale Poker. In Proceedings of the 18th International

Joint Conference on Artificial Intelligence (Acapulco, Mexico) (IJCAI’03).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 661–668.
http://dl.acm.org/citation.cfm?id=1630659.1630756

[7] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. 2019.
Deep counterfactual regret minimization. In International Conference

on Machine Learning. 793–802.
[8] Noam Brown and Tuomas Sandholm. 2014. Regret transfer and pa-

rameter optimization. In Twenty-Eighth AAAI Conference on Artificial

Intelligence.
[9] Noam Brown and Tuomas Sandholm. 2018. Superhuman AI for heads-

up no-limit poker: Libratus beats top professionals. Science 359, 6374
(2018), 418–424.

[10] Noam Brown and Tuomas Sandholm. 2019. Superhuman AI for multi-
player poker. Science 365, 6456 (2019), 885–890.

[11] Andrew Gilpin and Tuomas Sandholm. 2006. A competitive Texas
Hold’em poker player via automated abstraction and real-time equi-
librium computation. In Proceedings of the National Conference on Ar-

tificial Intelligence, Vol. 21. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 1007.

[12] Andrew Gilpin and Tuomas Sandholm. 2007. Better automated ab-
straction techniques for imperfect information games, with application
to Texas Hold’em poker. In Proceedings of the 6th international joint

conference on Autonomous agents and multiagent systems. ACM, 192.
[13] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. 2007.

Potential-aware Automated Abstraction of Sequential Games, and
Holistic Equilibrium Analysis of Texas Hold’Em Poker. In Proceedings

of the 22Nd National Conference on Artificial Intelligence - Volume 1

(Vancouver, British Columbia, Canada) (AAAI’07). AAAI Press, 50–57.
http://dl.acm.org/citation.cfm?id=1619645.1619655

[14] John Alexander Hawkin, Robert Holte, and Duane Szafron. 2011. Au-
tomated action abstraction of imperfect information extensive-form
games. In Twenty-Fifth AAAI Conference on Artificial Intelligence.

[15] Christian Kroer and Tuomas Sandholm. 2014. Extensive-form Game
Abstraction with Bounds. In Proceedings of the Fifteenth ACM Con-

ference on Economics and Computation (Palo Alto, California, USA)

(EC ’14). ACM, New York, NY, USA, 621–638. https://doi.org/10.1145/
2600057.2602905

[16] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling.
2009. Monte Carlo sampling for regret minimization in extensive
games. In Advances in neural information processing systems. 1078–
1086.

[17] Michael Maschler, Eilon Solan, and Shmuel Zamir. 2013. Game Theory.
Cambridge University Press.

[18] John Nash. 1951. Non-cooperative games. Annals of mathematics

(1951), 286–295.
[19] John F Nash et al. 1950. Equilibrium points in n-person games. Pro-

ceedings of the national academy of sciences 36, 1 (1950), 48–49.
[20] Todd W Neller and Marc Lanctot. 2013. An introduction to counterfac-

tual regret minimization. In Proceedings of Model AI Assignments, The

Fourth Symposium on Educational Advances in Artificial Intelligence

(EAAI-2013), Vol. 11.
[21] Stuart Russell and Peter Norvig. 2009. Artificial Intelligence: A Modern

Approach (3rd ed.). Prentice Hall Press, USA.
[22] Tuomas Sandholm. 2010. The State of Solving Large Incomplete-

Information Games, and Application to Poker. AI Magazine 31, 4 (Sep.
2010), 13–32. https://doi.org/10.1609/aimag.v31i4.2311

[23] Jiefu Shi and Michael L Littman. 2000. Abstraction methods for game
theoretic poker. In International Conference on Computers and Games.
Springer, 333–345.

[24] Finnegan Southey, Michael P Bowling, Bryce Larson, Carmelo Pic-
cione, Neil Burch, Darse Billings, and Chris Rayner. 2012. Bayes’ bluff:
Opponent modelling in poker. arXiv preprint arXiv:1207.1411 (2012).

[25] Eric Steinberger. 2019. Single deep counterfactual regret minimization.
arXiv preprint arXiv:1901.07621 (2019).

[26] Eric Steinberger, Adam Lerer, and Noam Brown. 2020. DREAM: Deep
Regret minimization with Advantage baselines and Model-free learn-
ing. arXiv preprint arXiv:2006.10410 (2020).

[27] Karl Tuyls, Julien Perolat, Marc Lanctot, Joel Z Leibo, and Thore Grae-
pel. 2018. A Generalised Method for Empirical Game Theoretic Analy-
sis. arXiv:1803.06376 [cs.GT]

[28] Yevgeniy Vorobeychik and Michael PWellman. 2008. Stochastic search
methods for Nash equilibrium approximation in simulation-based
games. In Proceedings of the 7th international joint conference on Au-

tonomous agents and multiagent systems-Volume 2. International Foun-
dation for Autonomous Agents and Multiagent Systems, 1055–1062.

[29] Kevin Waugh. 2009. Abstraction in large extensive games. (2009).
[30] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo

Piccione. 2008. Regret minimization in games with incomplete informa-
tion. In Advances in neural information processing systems. 1729–1736.

http://dl.acm.org/citation.cfm?id=1630659.1630756
http://dl.acm.org/citation.cfm?id=1619645.1619655
https://doi.org/10.1145/2600057.2602905
https://doi.org/10.1145/2600057.2602905
https://doi.org/10.1609/aimag.v31i4.2311
https://arxiv.org/abs/1803.06376

	Abstract
	1 Introduction
	2 Notation and Background
	2.1 Game Theory
	2.2 Equilibria
	2.3 Counterfactual Regret Minimization (CFR)
	2.4 Abstractions

	3 Related Work
	3.1 Regret Minimization
	3.2 Leveraging Abstractions

	4 ReTrE Counterfactual Regret Minimization
	4.1 Overview
	4.2 Policy Network
	4.3 Exploration Dictionary and Network
	4.4 The Algorithms
	4.5 Convergence

	5 Experimental Evaluation
	6 Conclusions
	7 Future Work
	References

