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Recreational Games

MiniMax with alpha-beta pruning search
Monte Carlo tree search 

Deep neural networks 
Reinforcement Learning
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Real-world Strategic Scenarios

PoachingSecurity

Sports Military
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Game Theory

Theoretical framework for strategic interaction

Mathematical models and algorithms (Algorithmic Game Theory)

Conflict and cooperation

Intelligent rational decision-makers

Decisions influencing agents' welfare 
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Sequential Games Representation
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Sequential Games Representation
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Imperfect-information extensive-form 
games
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Nash Equilibrium

Definition
A Nash Equilibrium (NE) is a joint combination of strategies, stable w.r.t. unilateral 
deviations of a single player.

Theorem
Every n-player finite game has at least one NE profile in mixed strategies.

Approximations
An ε-approximate Nash Equilibrium (ε-NE) approximately satisfies the condition of 
NE.
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Regret Minimization
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Counterfactual Regret Minimization
Algorithm 1 CFR

Input the history history, the traverser player i, CFR iteration t, reach
probabilities ⇡i, chance reach ⇡c

Output counterfactual value v
�

i
(h)

1: function CFR(history, i, t, ⇡1, ⇡2, ⇡c):
2: h get information set associated to history

3: if h is terminal then
4: return ui(h)
5: else if h is chance then

6: H
0  ✓(h,RA) . RA being the random action

7: for all h
0 2 H

0
do

8: history
0  history + info(h0) . info() returns the public info

9: v
�

i
(h) v

�

i
(h)+CFR(history0, i, t,⇡1,⇡2,

⇡c
|H0| )

10: return mean(v�
i
(h))

11: else

12: v
�

i
(h) 0

13: v
�

i

�
✓(h, a)

�
 0 for all a 2 Ah

14: for all a 2 Ah do

15: if ⇢(h) = 1 then

16: v
�
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�
✓(h, a)

�
 CFR(history + a, i, t,�

t(h, a) · ⇡1,⇡2,⇡c)
17: else

18: v
�
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�
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�
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20: if ⇢(h) = i then

21: for all a 2 Ah do

22: ri(h, a) ri(h, a) + ⇡c · ⇡�i ·
�
v
�

i
(✓(h, a))� v

�

i
(h)

�

23: si(h, a) si(h, a) + ⇡i · �t(h, a)

24: �
t+1(h) regret-matching values

25: return v
�

i
(h)
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Abstractions

Abstractions are a smaller version of the game capturing the most essential 
properties of the real domain, reducing complexity.

The solution of the abstracted game provides a useful approximation of the optimal 
strategy.

• Information abstractions
• Action abstractions
• Simulation-based abstractions 

Libratus, 2017
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The Problem

Complexity
Real-world games and strategic scenarios are too large to be represented and 
analyzed.

Domain-independence
No clear domain-independent abstraction approach was presented to solve large 
games with many actions.

Legacy
Most works are based on classical abstraction techniques not leveraging new 
powerful learning approaches.
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Regret-based Traces-Exploration Counterfactual Regret Minimization (RETRE) is a 
domain-independent model-free abstraction framework, able to find approximate 
mixed strategy Nash Equilibria in any extensive-form game in a simulation-based 
fashion.

RETRE leverages deep neural networks and confidence-based exploration 
techniques to approximate the behavior of CFR in the full game.

RETRE is a scalable pre-play iterative algorithm, focusing on the most exploitable 
parts of the game to obtain competitive suboptimal strategies.

RETRE - Regret-based Traces-Exploration Counterfactual Regret Minimization
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RETRE - Overview
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RETRE - The Algorithm

Algorithm 1 ReTrE

1: function ReTrE(k, N , T , RT ):
2: Initialize PN,ED,EN for each player i 2 N
3: for ReTrE iteration rt = 1 to RT do
4: traces GetTracesUCB(ED,EN, rt, k)
5: for CFR iteration t = 1 to T do
6: for all i 2 N do
7: CFR([ ], i, t, rt, 1, 1, 1)

8: ComputeEV(rt,�,⇡�, ED,EN)
9: Train EN through ED

10: Train PN

1
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RETRE - Policy Network
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RETRE - Exploration

v̂i(h, a) =

∑T
t=1

(

t · πσ,t
−i(h) ·
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, where v̄ is the average EV

n are the visits throughout ReTrE

Upper Confidence Bound ucb = v̄ +

√

2 log(t)

n

Exploration Network  (EN) 

k, maximum number of children when exploring
Exploration Parameter 

(EP)

estimate v̄ through EN : H → R

n = min
h′∈ED

nh′
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RETRE - Exploration

Algorithm 1 ReTrE - EV Computation and Collection

1: function ComputeEV(rt, ⇡�, ED, EN):
2: for all information sets h 2 H do
3: i ⇢(h)
4: for all a 2 Ah do
5: h

0  ✓(h, a)
6: v̂i  compute EV
7: if rt = 1 then
8: v̄  v̂i

9: n 1
10: else
11: if h

0 2 EDi then
12: v̄, n get hv̄, ni of h0 from EDi

13: else
14: v̄  predict v̄(h0) through ENi

15: n estimate n

16: v̄  v̄·n+v̂i
n+1

17: n n+ 1
18: Store

⌦
h
0
, hv̄, ni

↵

1
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RETRE - Exploitability Evaluation

Best Response (BR)

Exploitability

NASHCONV

if ui(BR(σ−i), σ−i) = max
σ′i∈Σi

ui(σ
′

i, σ−i)

e(σi) = ui
(

σ∗

i , BR(σ∗

i )
)

− ui
(

σi, BR(σi)
)

NashConv(σ) =
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max
σ′i∈Σi

ui(σ
′

i, σ−i)
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RETRE - Exploitability Evaluation
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         CFR-500 and RETRE

RETRE shows lower exploitability, 
after an exploration phase, 
compared to CFR.
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RETRE - Exploitability Evaluation
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We compare different configurations to examine RETRE’s behavior.
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RETRE - Head-to-head Simulations
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We run head-to-head games to evaluate actual performance during play.
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Conclusions

Focused on the challenge of analyzing large and infinite extensive-form games, 
capturing the essence of real world-scenarios, to find ε-NEs.

Presented RETRE, a scalable domain-independent model-free abstraction 
framework, able to solve large extensive-form games in a simulation-based fashion.

Leveraged neural networks and confidence-based exploration to approximate the 
behavior of optimal regret minimization algorithm CFR in the full game.

Evaluated performance on games small enough to be analyzed by CFR, 
measuring exploitability, and observed low distance from equilibrium for RETRE.
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Future work

Evaluate performance on large games.

Comparison with abstraction algorithms.

Optimize information embedding capturing potential.

Leverage other upper confidence bound methods.

Integration of CFR variants.

Integrate strategy refinement techniques.
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