Research Project Proposal: Sample complexity of transfer learning in reinforcement learning under a parametrized setting

> Riccardo Poiani riccardo.poiani@mail.polimi.it CSE Track

- Motivation
- State of the art
 - Generative setting
 - Non-generative setting
- Research idea and plan

Outline

Motivation

- State of the art
 - Generative setting
 - Non-generative setting
- Research idea and plan

Problems and challanges

- Superhuman achievements in some problems but...
- Training costs **money**
- Training is **slow**
- Training can be **dangerous**

Transfer: benefits

_

Transfer: an example

Reinforcement learning (RL)

An **agent** acts in an **environment** in order to maximize a **reward signal**.

The problem is usually formalized as a Markov Decision Process:

- States: S
- Actions: A
- Initial state distributions
- Reward function
- Transition distribution
- Discount factor: It encodes information about horizon H

- A **policy** π is a distribution over the actions, given the state
- The goal is to learn an **optimal policy** (up to some required accuracy)
 - the policy that **maximizes** the **expected cumulated discounted** reward
 - \bigcirc Often expressed in term of $V^{\pi}(s)$ or $Q^{\pi}(s, a)$
- Many algorithms exist: SARSA, Q-learning, Delayed Q-learning...

RL: sample complexity

Number of timestamps in which the policy is sub-optimal w.r.t. a fixed quantity ϵ

PERFORMANCE

RL: PAC-MDP efficient algorithm

- **Probabilistic correct** with confidence at least 1δ
- Polynomial sample complexity in the

e relevant quantities
$$\left(S, A, \frac{1}{\epsilon}, \frac{1}{\delta}, H\right)$$

PERFORMANCE

Setting and goal of the project

- Typical transfer setting
- unknown parameter $\theta \in \Theta$
- Understanding how to exploit transferred knowledge to reduce sample complexity

• Generative case

- Non generative case
- Research objective: algorithms with **theoretical** guarantees; **experiments**

• The agent acts in an **enviroment** whose dynamics are characterized by some

- Motivation
- State of the art
 - Generative setting
 - Non-generative setting
- Research idea and plan

RL: Transfer

Paper	Allowed Differences	Knowledge Transferred	Metric
Abel et. al [2018]	Reward	V(s) / Q(s,a)	Jumpstart and Sample complexity
Azar et al. [2013]	Transitions and Rewards	Policy	Cumulated reward
Tirinzoni et al [2019]	Transitions and rewards	Samples	Cumulated reward
Ammar et al. [2015]	AII	Samples	Cumulated reward
Tirinzoni et al. [2018]	Transitions and rewards	V(s)	Sample complexity
Many others			

- Motivation
- State of the art
 - Generative setting
 - Non-generative setting
- Research idea and plan

Generative settings

- The analysis of the transfer case is currently missing
- Classical RL cases
 - A typical lower bound of the pro
 - **Uniform** sampling approach (Azar et al. [2013])
 - match lower bound under some assumptions
 - Variance reduced approach (Sidford et al. [2019])

oblem:
$$\tilde{O}\left(\frac{|S||A|H^3}{\epsilon^2}\right)$$

- Motivation
- State of the art
 - Generative setting
 - Non-generative setting
- Research idea and plan

Non-generative setting

$$\circ \quad \tilde{O}\left(\frac{|\Theta| H^3}{\epsilon^2}\right) \text{ match a lower bou}$$

O **Impractical** algorithm

• **Parameter elimination** method (PEL) (Dyagilev et al. [2008])

$$\bigcirc \tilde{O}\left(\frac{|\Theta|H^6}{\epsilon^3}\right)$$

• Sequential probability ratio test

Maximum Exploration Reinforcement Learning (MERL) (Lattimore et al. [2013])

nd up to a log factor

Non-generative setting

- On the sample complexity of Multi-task RL (Brunskill et. Al [2013])
 - Multi-task setting
 - **Clustering** approach
 - Theoretical bounds
 - Trade-off between structure exploitation and exploration

Non-generative setting

- Hidden parameter MDPs (Killian et. Al [2017])
 - O **Complex** solution that works very well in practice
 - No theoretical guarantees
- Contextual MDPs (Modi et. Al [2017])
 - O Continuous space for the context
 - O Known context

- Motivation
- State of the art
 - Generative setting
 - Non-generative setting
- Research idea and plan

How to tackle the problem

- The problem of sample complexity in the transfer learning setting is hard
- There is little understanding so far in the literature
- We can take advantage of a generative model to better understand the problem
- From this simplified case, take insight for more practical algorithms

Desired achievements

- Generative case [65% completed]
 - O **Online** algorithm with **theoretical** guarantees [85%]
 - Better bounds than the classical RL case by exploiting the structure [95%]
 - Propose a real setting when the algorithm can be used [10%]

Desired achievements

- Non-generative case [0% completed]
 - Online algorithm with theoretical guarantees
 - **Experiment** to compare against state-of-the-art algorithms

- ICML 2020 7 February
- NeurIPS 2020: around the end of May

Milestones

Research plan

Thanks for your attention!