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Reinforcement learning (RL)

An agent acts in an environment in order to maximize a reward signal.

The problem is usually formalized as a Markov Decision Process:

∙ States: S

∙ Actions: A

∙ Initial state distributions

∙ Reward function

∙ Transition distribution

∙ Discount factor:
It encodes information about 
horizon 



RL: goal 

∙ A policy is a distribution over the actions, given the state

∙ The goal is to learn an optimal policy (up to some required accuracy) 



Problems and challanges

∙ Superhuman achievements in some problems but…

∙ Training costs money

∙ Training is slow

∙ Training can be dangerous

∙ Poor generalization!





Transfer: different approaches
● Learning from scratch

● Jumpstart 
[Mann and Choe 2012, Abel et al. 2018]

● Identification
[Brunskill and Li 2013, Liu et al. 2016]

Most existing algorithms for task identification do not actively search for 
discriminative information
[Dyagilev et al. 2008, Brunskill and Li 2013, Azar et al. 2013, Liu et al. 2016] 
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Key questions

● How to design an algorithm that actively identify the target task given 
prior knowledge?

 
● How to exploit the sequential nature of the problem?
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Sequential Transfer: Setting
∙ Hidden-mode MDP [Choi et al. 2000]

○ Agent interacts with a sequence of unknown tasks
○ Finite set of possible MDP models 
○ Task evolve according to a Markov chain 

∙ Generative Model

∙ Informed task arrival 

○ The agent performs at most n query to the oracle (piecewise stationarity)

○ Goal: identify an ε-optimal policy



Sequential Transfer: Interaction

1. Extrapolate knowledge from the task evolution

2. Use this knowledge as a prior in the current task to quickly identify a good policy

3. Refine the knowledge that we have so that a more accurate prior will be available 
at the next iteration 
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Policy Identification

● Input 
○ Estimates of models in ϴ
○ Δ maximum error on model estimates
○ Accuracy ε
○ Confidence δ
○ Number of samples n

● Output
○ ε-optimal policy with probability 1 - δ



Policy Identification

● Assume for the moment that Δ=0

● Main idea: not all the state-action pair are equally informative

● Example: if all models provide nearly-deterministic and highly diverse in (S,A)
very few samples will be required to identify the correct model
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  The algorithm
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2.  for t=1...n:
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 b. Update set of plausible models  

 c. Check stopping condition  

 d. Query Generative Model  

  
2.  for t=1...n:
      a. Build empirical MDP
        



Policy Identification

How to query the Generative Model to maximize information?

  



Policy Identification

Main result: Stopping time to identify an ε-optimal policy w.p. 1-δ 

  



Sequential Transfer

● True task as the hidden state of an Hidden Markov Model  (HMM)

● We interact with the Generative Model to retrieve information on the true task

● Learn HMM via tensor decomposition [Anandkumar et al. 2014]
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Sequential Transfer

Main results:

● Error estimates converges to 0 with rate

● Given the estimate of T, we can discard unlikely models prior to run our policy 
identification algorithm  
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Conclusions

● Actively search for information can lead to strong theoretical guarantees and 
better performances w.r.t. jumpstart methods

● Exploiting temporal correlations provides strong theoretical guarantees and 
performance boosts  

 



Thanks for your attention!


