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Data-intensive applications

What is a «data-intensive» application?

We are talking about:

• Software applications

• Big data 



The Big Data era 

Big data means (at least)
three problems:

1. Big Volume

2. Big Velocity

3. Big Variety



Data-intensive vs. Compute-intensive

Data-intensive application: 
data (the quantity, the speed at which it is changing, the variety) is the 
primary challenge

Compute-intensive application:
CPU is the bottleneck



A tale of two worlds

Now a step back into the state of the art

Two main areas:

• Database research area

• Distributed systems research area



Database basics

• Collection of data

• Software used to manage databases is called Database Management System 
(DBMS)

• The first data model was the relational model



Relational model

By User:AutumnSnow - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1313684



Transactions

• Classical DBMSs usually support transactions

• A transaction is a unit of work that must be
Atomic, Consistent, Isolated and Durable (ACID)

• On-line Transaction Processing (OLTP) is a scenario where a database is 
used mainly for processing multiple transactions 

• The transaction management can be a bottleneck when implemented in 
data-intensive systems



Issues with early databases

• Classical solutions (Oracle, MySQL) were not good at “horizontal” scaling

• A new type of systems called NoSQL started to gain relevance in the 2000s

Image from:https://www.redswitches.com/hs-fs/hubfs/scaling-image.jpg?width=1580&name=scaling-image.jpg



NoSQL

NoSQL started for data-intensive needs – Volume, Variety

Usually a NoSQL database is:

• non-relational

• distributed

• open-source

• horizontally scalable



NoSQL data models

• NoSQL is an inherently heterogeneous category

Images from https://studio3t.com/knowledge-base/articles/nosql-database-types/#key-value-data-store

Document data model (e.g. MongoDB) Wide column data model (e.g. Cassandra)



NoSQL issues

• NoSQL systems are valuable tools, especially for data-intensive requirements

• Though they have a big flaw: lack of support for full ACID transactions 

• And OLTP market is still relevant



NewSQL

• The solution for scalable OLTP scenarios: NewSQL 

• They try to make scalable as much as possible the traditional relational 
systems, while preserving all their guarantees 

• Different approaches were adopted to implement transactions with strong 
consistency and isolation with sufficient performance and availability



NewSQL approaches

• Synchronization based on specialized hardware like atomic clocks, adopted 
by Google Spanner

• Limit transaction expressivity, adopted by Calvin

• Using information on replication provided explicitly by the user the to 
optimize transactions in distributed settings, adopted by VoltDB



A tale of two worlds

Two main areas:

• Database research area

• Distributed systems research area



MapReduce

• In Distributed Systems research, systems explicitly designed for distributed 
processing in large-scale compute infrastructures started to gain popularity

• These systems trace their roots to Google’s programming model called 
MapReduce (2004)



MR fundamentals

• The computation is split into two phases, Map and Reduce

• Map processes individual elements
For each of them outputs one or more <key, value> pairs

• Reduce processes all the values with the same key and outputs a value

• The runtime system controls scheduling, load balancing, communication, 
fault tolerance

From the slides of A. Margara from Distributed Systems course



MR word count example

Image from: https://blog.trifork.com/wp-content/uploads/2009/08/MapReduceWordCountOverview1.png



Beyond MapReduce
In the last decade, many systems extended and improved the MapReduce 
abstraction in many ways

• From two processing steps to arbitrary acyclic graphs of transformations

• From batch processing to stream processing

• From disk to main-memory or hybrid approaches

Examples:

• Apache Spark for batch processing

• Apache Flink for stream processing
From the slides of A. Margara from Distributed Systems course



Batch processing - Spark
• Similar to MapReduce

o Instead of only two stages (map and reduce) …

o … arbitrary number of stages

• Intermediate results can be cached in main memory if they are reused 
multiple times

• Scheduling of tasks (stages) ensures that the computation takes place close to 
the data 

From the slides of A. Margara from Distributed Systems course



Stream processing - Flink
• A job is not split into stages that are scheduled

• Instead, all the operators are instantiated as soon as the job is submitted

o They communicate using TCP channels

o An operator can start processing as soon as it has some data available from 
the previous ones

• Pipeline architecture where multiple operators are simultaneously 
running

From the slides of A. Margara from Distributed Systems course



Data-intensive issues

• The presented data systems –relational DB, NoSQL, NewSQL, MR, 
batch/stream processing– offer solutions to solve specific data processing and 
management tasks 

• But often requirements of a data-intensive application can be heterogeneous 

• Therefore they cannot be satisfied by any of these systems alone



Current approach

• Developers in practice build complex architectures that combine multiple 
systems 

• They implement application logic in order to orchestrate their interaction 



Current problems
• In doing so, they lose the benefits provided by the systems in terms of 

guarantees on the data and transparent deployment and communication

• Also, integrating data systems together necessitates a deep understanding of:

o Semantics

o Workload assumptions

o Performance characteristics

o Deployment strategies 

o Configuration opportunities 



An online collaboration tool example
Developers need to :

• configure individual subsystems 

• manually integrate the subsystems

• implement the mechanisms that 
ensure correctness criteria (profile 
information is consistent across 
replicas, temporal database and the 
queuing system have consistent 
order of messages, …)

• Take care of performance concerns 



A unifying model

• The goal of the research is finding a formal model that defines high-level 
notions and structures 

• The purpose is twofold: 

1. the various data-intensive systems usually present intersections among 
them, therefore a unifying model can be useful to better understand the 
semantics of the converging concepts of different systems 

2. this modeling framework can be a first fundamental step in the direction 
of a change of paradigm, that leads to a new approach for designing 
data-intensive application 



A unifying model

• In this way, developers no more have to deal with trying to put different and 
independently developed systems together in a sort of "software collage", 
where the formal guarantees provided by the single systems could be lost. 



A unifying model
Conceptual model

Architectural model Guarantees model

Operational model
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