Research Project Proposal:
Towards a unifying model for

data-intensive applications

Nicolo Felicioni
nicolo.felicioni@mail.polimi.it
Computer Science and Engineering

S RN J/
[\ ") POLITECNICO 7=

56
;.;"
b
:’\fs,"ﬁ@ MILANO 1863

in Information Technology

Data-intensive applications

What is a «data-intensive» application?
We are talking about:
® Software applications

® Big data

The Big Data era

Big data means (at least)
three problems:

1. Big Volume
2. Big Velocity

3. Big Variety

THE 3Vs OF BIG DATA

VOLUME

¢ Amount of data generated

¢ Online & offline transactions
¢ In kilobytes or terabytes

¢ Saved in records, tables, files

’@

VELOCITY VARIETY

¢ Speed of generating data ¢ Structured & unstructured

¢ Generated in real-time ¢ Online images & videos

¢ Online and offline data ¢ Human generated - texts

¢ In Streams, batch or bits + Machine generated - readings

) =)

Data-intensive vs. Compute-intensive

Data-intensive application:
data (the quantity, the speed at which it is changing, the variety) is the
primary challenge

Compute-intensive application:
CPU is the bottleneck

A tale of two worlds

Now a step back into the state of the art

Two main areas:

® Database research area

Database basics

® Collection of data

® Software used to manage databases is called Database Management System
(DBMS)

® The first data model was the relational model

Relational model

Relation variable Attribute (Column) {unordered}

(Table hame)
'/ / \ Heading
R A /

\

Value

) Relation
Body (Table)

W

Tuple (Row) {unordered}

By User:AutumnSnow - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1313684

Transactions

® (Classical DBMSs usually support transactions

® A transaction is a unit of work that must be
Atomic, Consistent, Isolated and Durable (ACID)

® On-line Transaction Processing (OLTP) is a scenario where a database is
used mainly for processing multiple transactions

® The transaction management can be a bottleneck when implemented in
data-intensive systems

Issues with early databases

® (Classical solutions (Oracle, MySQL) were not good at “horizontal” scaling

VERTICAL SCALING HORIZONTAL SCALING
Increase size of instance (Add more instances)

(RAM, CPU etc.)
== == =X

—

® A new type of systems called NoSQL started to gain relevance in the 2000s

Image from:https://www.redswitches.com/hs-fs/hubfs/scaling-image.jpg?width=1580&nhame=scaling-image.jpg

NoSQL

NoSQL started for data-intensive needs — Volume, Variety
Usually a NoSQL database is:

® non-relational

® distributed

® open-source

® horizontally scalable

NoSQL data models

® NoSQL is an inherently heterogeneous category

{ * Table with single-row partitions S
first name: ‘Paul’, G partition key
_ surname: ‘Miller’, String " Typed field values T— "
7 eell: 447557505611 ' e hibé‘ P 6\'06\65 performer born | country | died | founded | style | type
Lty: ! ' Y ohn Lennon 1940 | England | 1980 Rock | artist
| city | London’, . 660'6 / J g —
FIOIOS Koo > location: [45.123,47.232], partitions —* Paul McCartney | 1942 | England Rock | artist [* rows
| ; . o , Fields can contain \ /
. ~Profession: [‘banking’, ‘finance’, ‘trader’'], ;. The Beatles England 1937 Rock | band
g .
cars: | * Column family view N cells
{ model: ‘Bentley’, A p - e e e e e >
born country died style type
years: 1973 ' John Lennon —» ‘ * ‘ ‘ ‘
1940 England 1980 Rock artist
value: 100000, .. }, \ Fields can contain an array of sub- \ ﬂ g ﬂ l ﬂ
{ model: ‘Rolls ROYCE ! ’ documents f born country style type
Paul McCartney —» ‘ * { *
year: 1965 / 1942 England Rock artist
value: 330000, .. } > : : I :
country founded style type
] The Beatles —» * ‘ ‘ ‘
} England 1957 Rock band

Document data model (e.g. MongoDB) Wide column data model (e.g. Cassandra)

Images from https://studio3t.com/knowledge-base/articles/nosql-database-types/#key-value-data-store

NoSQL issues

® NoSQL systems are valuable tools, especially for data-intensive requirements
® Though they have a big flaw: lack of support for full ACID transactions

® And OLTP market is still relevant

NewSQL

® The solution for scalable OLTP scenarios: NewSQL

® They try to make scalable as much as possible the traditional relational
systems, while preserving all their guarantees

® Different approaches were adopted to implement transactions with strong
consistency and isolation with sufficient performance and availability

NewSQL approaches

® Synchronization based on specialized hardware like atomic clocks, adopted
by Google Spanner

® |imit transaction expressivity, adopted by Calvin

® Using information on replication provided explicitly by the user the to
optimize transactions in distributed settings, adopted by VoltDB

A tale of two worlds

Two main areas:

® Distributed systems research area

MapReduce

® In Distributed Systems research, systems explicitly designed for distributed
processing in large-scale compute infrastructures started to gain popularity

® These systems trace their roots to Google’s programming model called
MapReduce (2004)

MR fundamentals

® The computation is split into two phases, Map and Reduce

® Map processes individual elements
For each of them outputs one or more <key, value> pairs

® Reduce processes all the values with the same key and outputs a value

® The runtime system controls scheduling, load balancing, communication,
fault tolerance

From the slides of A. Margara from Distributed Systems course

MR word count example

The overall MapReduce word count process

Input Splitting Mapping Shuffling Reducing Final result
Bear, 1 Bear, 2
Deer, 1 Bear, 1
Deer Bear River Bear, 1
River, 1
/ Car, 1
Car, 1 Car, 3 » Bear, 2
Deer Bear River Car, 1 Car, 1 Car, 3
Car Car River Car Car River Car, 1 Deer, 2
Deer Car Bear River, 1 River, 2
Deer, 1 Deer, 2 >~
Deer, 1
Deer, 1
Deer Car Bear Car, 1 /
Bear, 1 River, 1 River, 2
River, 1

Image from: https://blog.trifork.com/wp-content/uploads/2009/08/MapReduceWordCountOverview1.png

Beyond MapReduce

In the last decade, many systems extended and improved the MapReduce
abstraction in many ways

® From two processing steps to arbitrary acyclic graphs of transformations
® From batch processing to stream processing
® From disk to main-memory or hybrid approaches
Examples:
® Apache Spark for batch processing

® Apache Flink for stream processing

From the slides of A. Margara from Distributed Systems course

Batch processing - Spark

® Similar to MapReduce
O Instead of only two stages (map and reduce) ...

O ... arbitrary number of stages

® Intermediate results can be cached in main memory if they are reused
multiple times

® Scheduling of tasks (stages) ensures that the computation takes place close to
the data

From the slides of A. Margara from Distributed Systems course

Stream processing - Flink

® A job is not split into stages that are scheduled
® Instead, all the operators are instantiated as soon as the job is submitted
O They communicate using TCP channels

O An operator can start processing as soon as it has some data available from
the previous ones

» Pipeline architecture where multiple operators are simultaneously
running

From the slides of A. Margara from Distributed Systems course

Data-intensive 1ssues

® The presented data systems —relational DB, NoSQL, NewSQL, MR,
batch/stream processing— offer solutions to solve specific data processing and
management tasks

® But often requirements of a data-intensive application can be heterogeneous

® Therefore they cannot be satisfied by any of these systems alone

Current approach

® Developers in practice build complex architectures that combine multiple
systems

® They implement application logic in order to orchestrate their interaction

Current problems

® In doing so, they lose the benefits provided by the systems in terms of
guarantees on the data and transparent deployment and communication

® Also, integrating data systems together necessitates a deep understanding of:
O Semantics
o Workload assumptions
o Performance characteristics
o Deployment strategies

o Configuration opportunities

An online collaboration tool example

Chat

User Profile informations

\4 \

C
C
@Cache Iay;

6@% storing chat info J

system toring profile activity

P —
N —
Temporal

DB
R

Chat

_ Activity informations

N

Log in info

Relational
DB

User informations
Y

Analytical system

User

Developers need to :

® configure individual subsystems
® manually integrate the subsystems

® implement the mechanisms that
ensure correctness criteria (profile
information is consistent across
replicas, temporal database and the
queuing system have consistent

order of messages, ...)

® Take care of performance concerns

A unifying model

® The goal of the research is finding a formal model that defines high-level
notions and structures

® The purpose is twofold:

1. the various data-intensive systems usually present intersections among
them, therefore a unifying model can be useful to better understand the
semantics of the converging concepts of different systems

2. this modeling framework can be a first fundamental step in the direction

of a change of paradigm, that leads to a new approach for designing
data-intensive application

A unifying model

® In this way, developers no more have to deal with trying to put different and
independently developed systems together in a sort of "software collage",
where the formal guarantees provided by the single systems could be lost.

C_onceptual model

A unifying model

Operational model

. e TR - o - I ‘ (-hﬁh-‘ i | 1 ‘uﬁ ’(h-n]
- —— e | v v 'v- v v - j S e e e ey e Chows ey | S - ——
T L I N - B — Ot i | SR S L St e |- S e o ond e p— - ooy
N e e | e emw era—— rw-* rn-* .'-l- .-(h—“ :.—.—-‘ | e Lote Wwene Lote W EVT PR —. wnd ond rmerve ond od e
. — L. —— 'l.— ——— O — - — —— . lets wea | | Ah- Ah— J
- r:- v-'-—.::..:—-——-::::-—-——::.'———n::.v——::.h-—-::‘ “ I oy dut | Voo "- “. ". :‘. :% ‘
> — :——-—-—- ,"_""". o _,'_" ' — “:_"'"""""" ‘_"""'""‘ e e o | Pyt OM “M .m-a-u .ry—-u ’M
S— P B o ;v. 7 Ve - :v- - _li- — :v- Lovvage dute nwiny | N Ve Y= ’h ’h ".
r— T ([T— - w—— |
oy e M i B ur e
. D o ‘_a-: B etnenten :— d Fb-(lll) *(Tvﬁ-)
At e @ nm |\ o s g — .N—Q--— :v gt e (w.ll L) e
| — e etum | S s - - . “
Ameme Toxgeem cns |- t I~ "M.W"." ’h—t—u .-,—--m‘
. t*_.- V‘~v ~
—_— M— —1= S S e e e
I he n R Gt | Cole deploymen
| — - — “'!"""i"' e e — —p— L tve L twve
e e :~. I :'« | (phvment b (ephy et v |
Cm——— | - I
Architectural model Guarantees model
+
. Interra Crterma e quest) | (ontinuwous dats acthhons]
pl B L Fawernal - Bt No
Aot mamage | Ves Yo» Yoo #w W 1
- 4
Faocwtom oot | Yo Yoo Yoo NIA #m—““ J
. + . ——
[panment ime [rphament tme [rpeyment tme Run tow Wh#“ # A . -
-
A atam #m #m. | i | J [md 1o emd ovder | Sequential #FIK) by hey i
Statn allovmtem | (Date { [t :
= (mputate e ! ! #’. ! mpuatn ! ! — N7 A At last orww
”- hrd ih,-d ih,-d !# ih,-d A(_!n-d I Fractly onw

Research activity

1. Scope definition

Research activity

1. Scope definition

2. Systems identification and classification

VOLTDB

B "{
/Y),
/ ’?-/‘154"'." g'}‘ ™)
\y —" O i&\ Z
CEOFlink ‘W

. mongo DB. {(‘z cassandra

™

APACHE

Spa

Research activity

1. Scope definition
2. Systems identification and classification

3. Preliminary study of the tools

AN % N

Research activity

. Scope definition
. Systems identification and classification

. Preliminary study of the tools

. First model

Operational model

Architectural model o N L 3|/ Guarantees model

U1 SR o NO

Research activity

. Scope definition
. Systems identification and classification
. Preliminary study of the tools

. First model

. Experiments and consolidated model (iterative task)

Research activity

1. Scope definition
2. Systems identification and classification

3. Preliminary study of the tools

4. First model

5. Experiments and consolidated model (iterative task)

6. Writing

Research activity

2019

2020

Task Name

Nov

Dec

Jan

Feb

Mar

Apr

May

June

July

Aug

Sept

Scope definition

Systems' identification and classification
Preliminary study of the tools

First model

Experiments, consolidated model and iterations
Writing

