
Research Project Proposal:
Towards a unifying model for 

data-intensive applications
Nicolò Felicioni

nicolo.felicioni @ mail.polimi.it
Computer Science and Engineering



Data-intensive applications

What is a «data-intensive» application?

We are talking about:

• Software applications

• Big data 



The Big Data era 

Big data means (at least)
three problems:

1. Big Volume

2. Big Velocity

3. Big Variety



Data-intensive vs. Compute-intensive

Data-intensive application: 
data (the quantity, the speed at which it is changing, the variety) is the 
primary challenge

Compute-intensive application:
CPU is the bottleneck



A tale of two worlds

Now a step back into the state of the art

Two main areas:

• Database research area

• Distributed systems research area



Database basics

• Collection of data

• Software used to manage databases is called Database Management System 
(DBMS)

• The first data model was the relational model



Relational model

By User:AutumnSnow - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=1313684



Transactions

• Classical DBMSs usually support transactions

• A transaction is a unit of work that must be
Atomic, Consistent, Isolated and Durable (ACID)

• On-line Transaction Processing (OLTP) is a scenario where a database is 
used mainly for processing multiple transactions 

• The transaction management can be a bottleneck when implemented in 
data-intensive systems



Issues with early databases

• Classical solutions (Oracle, MySQL) were not good at “horizontal” scaling

• A new type of systems called NoSQL started to gain relevance in the 2000s

Image from:https://www.redswitches.com/hs-fs/hubfs/scaling-image.jpg?width=1580&name=scaling-image.jpg



NoSQL

NoSQL started for data-intensive needs – Volume, Variety

Usually a NoSQL database is:

• non-relational

• distributed

• open-source

• horizontally scalable



NoSQL data models

• NoSQL is an inherently heterogeneous category

Images from https://studio3t.com/knowledge-base/articles/nosql-database-types/#key-value-data-store

Document data model (e.g. MongoDB) Wide column data model (e.g. Cassandra)



NoSQL issues

• NoSQL systems are valuable tools, especially for data-intensive requirements

• Though they have a big flaw: lack of support for full ACID transactions 

• And OLTP market is still relevant



NewSQL

• The solution for scalable OLTP scenarios: NewSQL 

• They try to make scalable as much as possible the traditional relational 
systems, while preserving all their guarantees 

• Different approaches were adopted to implement transactions with strong 
consistency and isolation with sufficient performance and availability



NewSQL approaches

• Synchronization based on specialized hardware like atomic clocks, adopted 
by Google Spanner

• Limit transaction expressivity, adopted by Calvin

• Using information on replication provided explicitly by the user the to 
optimize transactions in distributed settings, adopted by VoltDB



A tale of two worlds

Two main areas:

• Database research area

• Distributed systems research area



MapReduce

• In Distributed Systems research, systems explicitly designed for distributed 
processing in large-scale compute infrastructures started to gain popularity

• These systems trace their roots to Google’s programming model called 
MapReduce (2004)



MR fundamentals

• The computation is split into two phases, Map and Reduce

• Map processes individual elements
For each of them outputs one or more <key, value> pairs

• Reduce processes all the values with the same key and outputs a value

• The runtime system controls scheduling, load balancing, communication, 
fault tolerance

From the slides of A. Margara from Distributed Systems course



MR word count example

Image from: https://blog.trifork.com/wp-content/uploads/2009/08/MapReduceWordCountOverview1.png



Beyond MapReduce
In the last decade, many systems extended and improved the MapReduce 
abstraction in many ways

• From two processing steps to arbitrary acyclic graphs of transformations

• From batch processing to stream processing

• From disk to main-memory or hybrid approaches

Examples:

• Apache Spark for batch processing

• Apache Flink for stream processing
From the slides of A. Margara from Distributed Systems course



Batch processing - Spark
• Similar to MapReduce

o Instead of only two stages (map and reduce) …

o … arbitrary number of stages

• Intermediate results can be cached in main memory if they are reused 
multiple times

• Scheduling of tasks (stages) ensures that the computation takes place close to 
the data 

From the slides of A. Margara from Distributed Systems course



Stream processing - Flink
• A job is not split into stages that are scheduled

• Instead, all the operators are instantiated as soon as the job is submitted

o They communicate using TCP channels

o An operator can start processing as soon as it has some data available from 
the previous ones

• Pipeline architecture where multiple operators are simultaneously 
running

From the slides of A. Margara from Distributed Systems course



Data-intensive issues

• The presented data systems –relational DB, NoSQL, NewSQL, MR, 
batch/stream processing– offer solutions to solve specific data processing and 
management tasks 

• But often requirements of a data-intensive application can be heterogeneous 

• Therefore they cannot be satisfied by any of these systems alone



Current approach

• Developers in practice build complex architectures that combine multiple 
systems 

• They implement application logic in order to orchestrate their interaction 



Current problems
• In doing so, they lose the benefits provided by the systems in terms of 

guarantees on the data and transparent deployment and communication

• Also, integrating data systems together necessitates a deep understanding of:

o Semantics

o Workload assumptions

o Performance characteristics

o Deployment strategies 

o Configuration opportunities 



An online collaboration tool example
Developers need to :

• configure individual subsystems 

• manually integrate the subsystems

• implement the mechanisms that 
ensure correctness criteria (profile 
information is consistent across 
replicas, temporal database and the 
queuing system have consistent 
order of messages, …)

• Take care of performance concerns 



A unifying model

• The goal of the research is finding a formal model that defines high-level 
notions and structures 

• The purpose is twofold: 

1. the various data-intensive systems usually present intersections among 
them, therefore a unifying model can be useful to better understand the 
semantics of the converging concepts of different systems 

2. this modeling framework can be a first fundamental step in the direction 
of a change of paradigm, that leads to a new approach for designing 
data-intensive application 



A unifying model

• In this way, developers no more have to deal with trying to put different and 
independently developed systems together in a sort of "software collage", 
where the formal guarantees provided by the single systems could be lost. 



A unifying model
Conceptual model

Architectural model Guarantees model

Operational model



Research activity

1. Scope definition



Research activity

1. Scope definition 

2. Systems identification and classification 



Research activity

1. Scope definition 

2. Systems identification and classification 

3. Preliminary study of the tools 



Research activity

1. Scope definition 

2. Systems identification and classification 

3. Preliminary study of the tools 

4. First model 



Research activity

1. Scope definition 

2. Systems identification and classification 

3. Preliminary study of the tools 

4. First model 

5. Experiments and consolidated model (iterative task)



Research activity

1. Scope definition 

2. Systems identification and classification 

3. Preliminary study of the tools 

4. First model 

5. Experiments and consolidated model (iterative task) 

6. Writing 



Research activity

ScoSe deÀniWion
S\VWemV' idenWiÀcaWion and claVViÀcaWion
PUeliminaU\ VWXd\ of Whe WoolV
FiUVW model
E[SeUimenWV, conVolidaWed model and iWeUaWionV
WUiWing

TaVk Name Jan Feb MaU ASU Ma\ JXne JXl\ AXg SeSWNoY Dec
2019 2020


